Document Type

Article

Publication Date

5-5-2012

Publication Title

Journal of Biomedical Optics

Department

Thayer School of Engineering

Abstract

In this study, we demonstrate a method to quantify biomarker expression that uses an exogenous dual-reporter imaging approach to improve tumor signal detection. The uptake of two fluorophores, one nonspecific and one targeted to the epidermal growth factor receptor (EGFR), were imaged at 1 h in three types of xenograft tumors spanning a range of EGFR expression levels (n  =  6 in each group). Using this dual-reporter imaging methodology, tumor contrast-to-noise ratio was amplified by >6 times at 1 h postinjection and >2 times at 24 h. Furthermore, by as early as 20 min postinjection, the dual-reporter imaging signal in the tumor correlated significantly with a validated marker of receptor density (P  <  0.05, r  =  0.93). Dual-reporter imaging can improve sensitivity and specificity over conventional fluorescence imaging in applications such as fluorescence-guided surgery and directly approximates the receptor status of the tumor, a measure that could be used to inform choices of biological therapies.

DOI

10.1117/1.JBO.17.6.066001

Original Citation

Tichauer KM, Samkoe KS, Sexton KJ, Gunn JR, Hasan T, Pogue BW. Improved tumor contrast achieved by single time point dual-reporter fluorescence imaging. J Biomed Opt. 2012 Jun;17(6):066001. doi: 10.1117/1.JBO.17.6.066001. PMID: 22734757; PMCID: PMC3381038.

COinS