Document Type

Article

Publication Date

12-14-2007

Publication Title

Applied and Environmental Microbiology

Department

Thayer School of Engineering

Abstract

The production by filamentous fungi of therapeutic glycoproteins intended for use in mammals is held back by the inherent difference in protein N-glycosylation and by the inability of the fungal cell to modify proteins with mammalian glycosylation structures. Here, we report protein N-glycan engineering in two Aspergillus species. We functionally expressed in the fungal hosts heterologous chimeric fusion proteins containing different localization peptides and catalytic domains. . This strategy allowed the isolation of a strain with a functional -1,2-mannosidase producing increased amounts of N-glycans of the Man 5 GlcNAc 2 type. This strain was further engineered by the introduction of a functional GlcNAc transferase I construct yielding GlcNAcMan 5 GlcNac 2 N-glycans. Additionally, we deleted algC genes coding for an enzyme involved in an early step of the fungal glycosylation pathway yielding Man 3 GlcNAc 2 N-glycans. This modification of fungal glycosylation is a step toward the ability to produce humanized complex N-glycans on therapeutic proteins in filamentous fungi.

DOI

10.1128/AEM.01058-07

Original Citation

Kainz E, Gallmetzer A, Hatzl C, Nett JH, Li H, Schinko T, Pachlinger R, Berger H, Reyes-Dominguez Y, Bernreiter A, Gerngross T, Wildt S, Strauss J. N-glycan modification in Aspergillus species. Appl Environ Microbiol. 2008 Feb;74(4):1076-86. doi: 10.1128/AEM.01058-07. Epub 2007 Dec 14. PMID: 18083888; PMCID: PMC2258586.

COinS