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Abstract Explanations for protoplasmic streaming began
with appeals to contraction in the eighteenth century and
endedwith appeals to contraction in the twentieth. During the
intervening years, biologists proposed a diverse array of
mechanisms for streaming motions. This paper focuses on the
re-emergence of contraction among the molecular mecha-

nisms proposed for protoplasmic streaming during the
twentieth century. The revival of contraction is a result of a
broader transition from1 colloidal chemistry to a macro-
molecular approach to the chemistry of proteins, the
recognition of the phenomena of shuttle streaming and the
pulse of protoplasm, and the influential analogy between
protoplasmic streaming and muscle contraction.
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INTRODUCTION

In November of 1940, Time magazine celebrated the
“primordial heartbeat”manifest in the “pulse of protoplasm”
from the lowly slime mold, Physarum polycephalum
(Anonymous 1940). The pulses and rhythms of protoplasmic
or cytoplasmic streaming were not new in 1940. The
“circulation of cell sap” had been described as early as 1774
by Bonaventura Corti, and in the intervening years protoplasm
had been elevated to become the foundation of life by
Thomas Henry Huxley and Ernst Haeckel, with one of its most
important properties being its streaming motion (Corti 1774;
Huxley 1869; Haeckel 1869; Geison 1969). Indeed, by the mid-
twentieth century, theories explaining the motion of proto-
plasm were plentiful in the scientific literature (Seifriz 1943).
Even the pulse of Physarum had graced the pages of Time only
3 years earlier in a feature describing Professor William
Seifriz’s trip to the Pasteur Institute to film the elusive pulsing
movement (Anonymous 1937). What brought the pulse of the
protoplasm back to the pages of Time in 1940was a new set of
imaginative experiments for its manipulation, conducted in
William Seifriz’s University of Pennsylvania laboratory by the
young Japanese researcher, Noburo Kamiya.

Born in 1913, Kamiya had graduated from the University of
Tokyo in Japan and was studying in Germany at the Botanical
Institute of the University of Giessen with Professor Ernst
Küsterwhen, in 1939, hewas toldby the JapaneseEmbassy that
he should leave immediately. With 180 other Japanese citizens,

Kamiya sailed on the M. S. Yasukunimaru for Yokahama via
Bergen, Norway, New York, and San Francisco. Germany
invaded Poland as Kamiya was in transit. With research in
Germany out of the question, he set his sights on the United
States and began to learn English on the transatlantic voyage.
Kamiya had heard of William Seifriz in Germany, and arranged
for an introduction through officials at the Japan Institute in
NewYork. Fortunately for Kamiya, Seifriz spokefluent German,
which gave them a common language. More importantly,
Kamiya had just published a short paper on the rhythmic
movement of euglenoids that fit beautifully with Seifriz’s
passion for biological pulses and rhythms. Seifriz graciously
accepted Kamiya as a refugee student into his laboratory and
arranged for his support (Kamiya 1989).

At Penn, Kamiya was introduced to protoplasm research
using Seifriz’s cultures of Physarum. Kamiya adopted Seifriz’s
physical and chemical approach, including microdissection. As
he set about experimenting on factors that would alter the
flow of protoplasm, Kamiya noticed that mechanical pressure
changed the speed and direction of streaming. At the time, a
variety of chemical, electrical, and physical forces had been
invoked to explain protoplasmic streaming (more on this
below), but pressure was relatively unexplored. Kamiya’s real
innovation, however, lay in his double chamber method,
which he used to measure and manipulate pressure and
streaming. Kamiya discovered that he could stretch a blob of
protoplasm so that it remained connected by a thin thread
suspended in warm agar. Placing each blob in a separate
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airtight container, he could adjust the air pressure in each
chamber, and in doing so stop, start, and reverse the direction
of flow in the connecting thread. Air pressure in the double
chamber method was translated into motive force and a new
method for measuring and quantifying streaming was born.
What excited Seifriz most, however, was that the pulses in the
protoplasmic stream could be charted (Kamiya 1989). As
never before, the rhythms of protoplasmic streaming could be
represented as waves, just as the ebb and flow of blood in our
arteries can be represented on an EKG chart (Figure 1). These
traces graced the pages of Time in 1940, and celebrated this
international collaboration in the days before Pearl Harbor
(Anonymous 1940).

As thrilled as Kamiya and Seifriz were about this new
representation of the “pulse of protoplasm”, they were far
from explaining why it was there. In fact, what they had done
was to introduce and bolster a new aspect of the phenomena
of streaming. The challenge that lay ahead was that of finding
mechanisms that could explain this pulsing motion as well as
other forms of motion such as the jumpy saltational move-
ments of particles within a cell and the rotational movement
of the protoplasm.

Seifriz and Kamiya introduced the pulse of protoplasm at a
time when studies of protoplasm and its motion were shifting
from an approach dominated by colloidal chemistry to an
approach that concentrated on the macromolecular features
of proteins. New research by William Astbury on the
structures of fiber proteins and advances in the study of
muscle contraction after the SecondWorldWar led Seifriz and
others to revisit an old idea that posited contraction as the
means for producing protoplasmic motion. Rhythmic con-
traction also had the advantage of explaining the pulsing
movement of protoplasm in terms of repeating cycles of
contraction and relaxation. What distinguishes post-war
contraction theories from those of Corti and other earlier
scientists is the macromolecular approach of later scientists
that led them to search for the basis of cellular motion in the

structural properties of large protein molecules. While
advances in visualization allowed biologists to see new
fibrous structures within the cell, the macromolecular
approach lead them to characterize those structures in terms
of their constituent components, e.g., actin and myosin in the
case of streaming.

WILLIAM SEIFRIZ AND PROTOPLASM AT
PENN
William Seifriz (Figure 2) was a self-described “protoplasma-
tologist.” Born in Washington DC in 1888, Seifriz earned both
is B.S. and Ph.D. at Johns Hopkins University. Doctorate in
hand, he left the US in 1920, taking the long way to
Switzerland via Japan and India. A 6-month stay in the
laboratory of Robert Chodat in Geneva reinforced his interest
in both plant biogeography and the physiology of algae
(Rendle 1934). As a graduate student, Seifriz used micro-
dissection to analyze the viscosity of protoplasm in a variety of
organisms (Seifriz 1920). His interest in protoplasm’s proper-
ties as a colloidal solution lead him next to England to study
colloid chemistry, followed by a longer stay in Berlin at
Herbert Freundlich’s laboratory at the KaiserWilhelm Institute
for Physical Chemistry and Electrochemistry (Kamiya 1956).
Freundlich was a well-known colloid chemist with an interest
in applying colloid science to research on protoplasm (Donnan
1942). Colloidswere understood to be permanent suspensions
of one kind of microscopic matter in another. Freundlich and
others took a physical and chemical approach to the
properties of colloids examining, for instance, their viscosity,
elasticity, and reactivity as emulsions and gels (Deichmann
2007). Seifriz formed a lasting relationship with Freundlich,
and became a leading advocate for understanding protoplasm
as a colloidal system (Freundlich and Seifriz 1923; Seifriz 1936).

When he returned from Germany, Seifriz continued his
work on protoplasm from the perspective of colloidal

Figure 1. Kamiya’s measurement of the pulse of protoplasm in the capillary tube of Physarum
Kamiya measured the flow of protoplasm at a spot of the capillary tube of Physarum (indicated by the arrow pointed at the cell
on the right side of the figure) by measuring the width of the capillary tube at the region every ten seconds. The rhythmic
changes correspond to the shuttle motion of the pulse of protoplasm and confirm measurement taken volumetrically using
Kamiya’s double chamber method (Kamiya 1950).
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chemistry, first at Yale and then the University of Michigan,
before he became a National Research Fellow at the
University of Pennsylvania, where he was appointed to the
faculty in 1925 (Kamiya 1956). At Penn, Seifriz pursued his
interests in protoplasm and plant biogeography; publishing an
extensive array of papers on both, as well as a series of papers
just on the chemical properties of emulsions (see the
publication list in Kamiya 1956). While his early work on
protoplasm concentrated on structural features, by 1937 he
began to widen his research to consider the problem of
explaining motion (Seifriz 1937). In particular, Seifriz became
fascinated by the “shuttling motion” in filaments that
described flow in one direction that then reversed. Not
satisfied that changes in hydration and water flow could
explain this change of direction, Seifriz began his own
cinematic investigations of the ebb and flow of protoplasm
(Seifriz 1937). However, his own films paled in comparison to
those being produced at the Pasteur Institute by Jean
Comondon, so Seifriz arranged to visit Paris to film shuttling
motion with high temporal resolution (Anonymous 1937).
And, there, thanks to the then extraordinarily high frame rate
of Comondon’s equipment, Seifriz measured a regular cycle of
forward flow and its reversal every 40 or 45 seconds. Seifriz
hypothesized that this pulse was the result of a rhythm of
contraction and expansion of the protoplasm, and even
suggested that it might analogous to the “rhythmical
contraction of sympathetically controlled muscle tissue”
(Seifriz 1937, p. 398).

At the time, protoplasm enjoyed special status in biology.
Huxley, Haeckel, and many others viewed it as the
fundamental stuff of life. Investigating its properties,

especially its motion, was akin to searching for the basis of
life itself. Descriptions of protoplasm, analyses of its structure,
and theories for its motion abounded in the scientific
literature. Seifriz tried his hand at systematizing this knowl-
edge in a lengthy article for The Botanical Review published in
1943 (Seifriz 1943).

In “Protoplasmic Streaming”, Seifriz distinguished
streaming, as flow of protoplasm within a cell, from
amoeboid movement and euglenoid movement, which
both changed the overall shape of the cell body. He also
did not want to confuse streaming with organelles that
could move independently within the cell; streaming had to
be a feature of the protoplasm itself. Although he offered a
classification of movement that featured five categories
(agitation, rotation, circulation, shuttle, and sleeve), his
interest was on the organized directional movement seen in
the rotational flow at the periphery of cells in Nitella and the
characteristic ebb and flow of shuttle movement he
observed in his slime molds. With characteristic care, he
reviewed 11 proposed mechanisms for these various kinds of
motion before championing contraction as the cause of
protoplasmic streaming.

The evaluation of mechanisms of protoplasmic streaming
by Seifriz and others frequently depended as much on the
constitution of the phenomena as the nature of the proposed
mechanism. Appeals to hydration and osmosis, for instance,
were both discussed as possible causes of directional flow,
but ultimately rejected by Seifriz because they could not
explain the complex multidirectional flows observed in
circulation or the reversals seen in shuttle motion. Physical
theories based on surface tension, electricity, and magnetism
were all discussed as proposed mechanisms that corre-
sponded to cellular properties. However, Seifriz noted that
demonstrating that a cell exhibited surface tension or
responded to an electrical potential difference were not
sufficient to demonstrate that protoplasmic streaming was
caused by these finds of physical phenomena. Electrical
potentials were present, and they did effect protoplasm, but
how they did so, and whether they had enough influence to
create the different forms of streaming had not been
demonstrated.

A different kind of explanation was represented by the
extension of sol-gel reversibility from amoeboid movement to
protoplasmic movement. Samuel O. Mast at Johns Hopkins
University had proposed that amoebae move in part because
of the flow of protoplasmic solution that reacts to become a
gel surrounding the flowing boundary of solution (Mast 1923).
Seifriz was unconvinced. Protoplasmic flow in Amoeba was
understood to be unidirectional, and he did not see a way for
sol-gel reversibility to produce the kind of reversals and
rhythmicity observed in the shuttle streaming of plant and
fungal cells.

The only way that Seifriz saw to explain the pulse of
protoplasm was to return to theories of contraction. In his
review, Seifriz noted that contractility had been proposed by
Corti in 1774 when he first described streaming motion in
plants, and had enjoyed a long history since (Seifriz 1943, p.
110). Indeed, Otto Bütschli in his 1894 monograph on
protoplasm notes that contractility had great appeal from
the first observations of streaming because of the familiarity
of muscle contraction and the desire to find “fundamental

Figure 2. William Seifriz at his microscope in 1927
Image from Unknown (1927).
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properties” that can explain cellular motions (Bütschli 1894, p.
267). Nineteenth century advocates of the contractile theory
of streaming proposed a “fibrillar reticular framework” that
contracted and so drove the motion of the cellular matrix
(Bütschli, p. 267). Similar fibers had been invoked by Theodor
Boveri to explain the action of asters apparent in cell division,
and Boveri had specifically suggested that asters might act
just as muscle fibers do in contraction (Bütschli, p. 261). For
Bütschli and others, however, the contraction theory was
underdeveloped and could not explain why contraction in the
amoeba seemed to occur at the forward edge of motion
instead of the rear where it could drive motion forward
(Bütschli, p. 270). In place of nineteenth century contraction
theories based on fibrillar structures, many twentieth century
biologists moved to explanations based on the chemical
properties of solutions, such as the surface tension and sol-gel
reversibility explanations mentioned above.

Seifriz’s enthusiasm for the pulse of the protoplasm
brought him back to a contractile mechanism whose cycles of
contraction and relaxation could explain the rhythms that he
and Kamiya had been able to quantify. The actual mechanism
that Seifriz proposed was molecular, and based in the
contractile properties of polypeptides. As he put it, “The
contractility of protoplasm is due to the supercontraction of
its principal structural proteins through the folding of
molecular fibers symmetrically aligned and joined one to
the other by side chains so as to form a three-dimensional
lattice” (Seifriz 1943, p. 112).

The model for such polypeptides was the woolen fibers
that the British physicist William Astbury had been analyzing
using x-ray diffraction. In 1933, Astbury’s Fundamentals of
Fibre Structure had proposed that the elasticity of wool and
hair fibers was a result of the molecular structure (Hall 2014).
In 1938, Seifriz began to speculate that “contraction of folded
molecules such as those postulated by Astbury for wool and
hair” could form the molecular mechanism for streaming
(Seifriz 1938, p. 25).

Astbury’s study of protein structure did not endwithwool.
With a grant from the Rockefeller Foundation in 1938, he
turned to the molecular components of muscle, and the
molecule myosin in particular (Hall 2014, p. 80). Astbury was
interested to see if myosin, as a fibrous protein, played a role
in contraction by having the kind of foldedmolecular structure
that he had found in wool. In 1940, he and Sylvia Dickinson
reported that the keratin molecules in wool and the myosin
molecules in muscle had important similarities in their
structure, and that their transformation from folded to
extended forms could underlie their elasticity (Astbury and
Dickinson 1940). If Seifriz had been a fan of Astbury’s work on
wool, he was an even bigger fan of his work on myosin, and
took Astbury and Dickinson’s work onmyosin as evidence that
muscular contraction was based on the “supercontraction of
the orientedmyosin” (Seifriz 1942, p. 262). Seifriz did not claim
that myosin was the protein behind protoplasmic contraction,
but he was sure that a similar molecular mechanism was there
to be found.

While Seifriz was assimilating Astbury and Dickinson’s
ideas on myosin, he accepted another refugee student, Ariel
G. Loewy. Born in Romania in 1925, Loewy’s family fled the
rising political tensions in Europe in 1937 (Freeman 1996). They
lived in England until 1941 before relocating again toMontreal,

where Loewy attended McGill University. When Loewy
applied to Penn for graduate school, he received a wonderful
letter inviting him to join the Seifriz lab, and soon found
himself researching the mechanisms of protoplasmic stream-
ing. Loewy was given the task of elaborating the molecular
mechanism that Seifriz had proposed earlier.

Loewy’s work grew from that of Astbury and Dickinson,
but in the late 1940 s incorporated new results from Albert
Szent-Györgyi, the Hungarian chemist who hadwon the Nobel
Prize in 1937 for his discovery of vitamin C. During the war,
Szent-Györgyi had been working on myosin at the Institute of
Medical Chemistry at the University of Szeged in Hungary.
Although isolated from other scientists around the world
during the fighting, Szent-Györgyi’s work became widely
known in themid-1940 s (Szent-Györgyi 2004). Szent-Györgyi’s
group had differentiated two proteins involved in muscle
contraction, myosin and actin (Szent-Györgyi 1942). In a
pioneering series of experiments, his group then demon-
strated that the interaction of myosin and actin in the
presence of ATP mimicked the action of muscle contraction
(Szent-Györgyi 1949).

Building on the work of Astbury’s and Szent-Györgyi’s
groups, Loewy proposed a more detailed molecular mecha-
nism for protoplasmic streaming, but, like Seifriz, stopped
short of definitively demonstrating that myosin and actin
were involved in plant protoplasmic motion. Loewy’s idea was
that contractile proteins created the motive force for
streaming by being anchored on the edges of streams parallel
to the direction of flow (Figure 3). Contraction and expansion
of these fibrous proteins in phase with each other would
create motion in the surrounding protoplasm (Loewy 1949).
Loewy could not isolate the proteins that might be creating
this motion, but he could determine whether or not they

Figure 3. Loewy’s proposed molecular mechanism for
protoplasmic streaming
Extended (1 and 4) and contracted (2 and 3) forms of a protein
molecule with different attachment points to the cellular
substrate. Motion is created by the contraction and expansion
of many molecules in phase with each other (Loewy 1949).

Explaining the pulse of protoplasm 17
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reacted to ATP in the sameway as themyosin-actin complex in
muscle. In a series of experiments published in 1952, Loewy
demonstrated that molecules in Physarum polycephalum
responded similarly to the muscle proteins described by
Szent-Györgi’s group (Loewy 1952).

For researchers like Kamiya, Loewy’s results and similar
findings from his colleagues Hiromichi Nakajima and Shigemi
Abe in Osaka suggested that there were contractile proteins
present in streaming cells that were similar to actin and
myosin (Kamiya et al. 1957; Kamiya 1960). Loewy himself left
streaming research convinced that he needed to know more
about proteins. After earning his doctorate with Seifriz, he
went to Harvard to learn how to fractionate proteins from
blood, and, over the course of his career, elaborated and
isolated many of the proteins involved in the blood clotting
cascade (Freeman 1996).

Independently of Loewy, Albert Frey-Wyssling in Zürich,
R. J. Goldacre and I. Joan Lorch in London, and KurtMeyer and
Herman Mark in Geneva and New York developed theories of
streaming motion based on the folding and unfolding action
of protein molecules (Frey-Wyssling 1949; Goldacre and Lorch
1950 Meyer and Mark 1951). While Goldacre and Lorch built
their theory on the work of Astbury and Szent-Györgyi, as
Loewy had done, Meyer and Mark claim to have developed
their theory in 1929 based on their research on the molecular
structures of silk, tendon, and muscle. In 1953, just 2 years
before his death, Seifriz reviewed these theories and
surprisingly found them wanting. Just as he had with earlier
mechanisms of streaming, he worried that the “curling and
uncurling of protein molecules” could not account for the
range of motions associated with streaming or their locations
within the cell. In their place, he postulated ionic impulses
thought to travel through nerve and muscle fibers (Seifriz
1953). Despite Seifriz’s skepticism, the molecular action of
fibers, especially myosin and actin, could not be so easily
dismissed from the literature on streaming motion.

R. D. ALLEN, PRIMITIVE MOTILE
SYSTEMS, AND THE AGE OF ACTIN
William Seifriz was not the only biologist at Penn taking a
colloidal approach to protoplasm in the early twentieth
century. Lewis Heilbrunn had been hired there in 1929. He had
studied at Cornell University and then earned his Ph.D. with
Frank R. Lillie at the University of Chicago in 1914 (Steinbach
1960). At Penn, Heilbrunn was appointed in zoology, and
developed the general physiology program for premedical
students and graduate students. In 1929, Heilbrunn was a
recognized authority on protoplasm. Indeed, his book, The
Colloid Chemistry of Protoplasm, had appeared the year before
(Heilbrunn 1928).

Although Seifriz was appointed in the Botany Department
at Penn, he and Heilbrunn took a very similar approach to the
study of protoplasm. This is not to say that they agreed on
how to study protoplasm or how to characterize it as a
colloid. H. Burr Steinbach, Heilbrunn’s student, describes
Heilbrunn as “aman of strong opinions (who) had an ability to
state them forcefully and clearly. His was a tough mind with
little inclination to compromise” (Steinbach 1960). He did not
compromise with Seifriz. In 1924, Seifriz used his microsurgical

approach to produce an estimate of protoplasmic viscosity
that was much higher than that obtained by Heilbrunn in 1914.
Beginning in 1926, Heilbrunn issued what others perceived in
the field as a “devastating critique” of Seifriz’s method
(Heilbrunn 1926, 1928; James 1937). While both continued to
work on protoplasm, with Seifriz defending his microsurgical
method, there is no evidence that Heilbrunn and Seifriz
interacted at Penn despite their similar interests.

In the late 1940 s, Heilbrunn accepted Robert Day Allen
into his lab as a graduate student. By that time, Heilbrunn was
researching the effects of ions on cellular processes,
especially the effects of calcium. Allen began studying cellular
changes associated with fertilization in eggs of the clam,
Spisula solidissima. In light of his later work on cellular
movement, it is notable that even this early work included the
tracking of granular movement within cells at the time of
fertilization (Rebhun 1986).

As early as 1955 though, Allen’s attention began to shift to
the motion of amoebae (Allen 1955). Like many American cell
biologists, Heilbrunn spent every summer at the Marine
Biological Laboratory at Woods Hole, and took his graduate
students with him. This is a habit that Allen continued. His first
report on the motion of amoebae is a brief description of an
experiment published in MBL’s Biological Bulletin. In just a
paragraph, Allen describes his study of amoebae in capillary
tubes, which when broken, rupture the cell membranes and
allow water to mix with protoplasm. The resulting proto-
plasmic streaming was cell free, but still contractile, which
called into question Mast’s cellular basis for contractile
streaming. In his first full-length article on streaming, Allen
and J. D. Roslansky from Princeton University used interfer-
ence microscopy to measure a structural gradient within the
amoeba.

In their conclusion, Allen and Roslansky critically surveyed
mechanisms that could explain streaming. Their favored
mechanism was a contractile mechanism based on the
molecular folding and unfolding, as proposed by Goldacre
and Lorch in 1950. The weakness of this theory and others,
such as that based on the diffusion of water, was judged to be
its inability to explain quick reversals in flow or opposing
streams of protoplasm (Allen and Roslansky 1958). By 1961,
however, Allen had supplanted his earlier support for
Goldacre and Lorch with his own theory of amoebic move-
ment, asserting that contractions did not occur in the tail
but in the front of the amoeba, so instead of protoplasm
being pushed, it was being pulled. These contractions
were combined with differences in the constitution of the
protoplasm that altered its viscosity and velocity (Allen 1961,
1962).

In the summer of 1962, Kamiya returned to the United
States andworked at theMBL inWoods Hole before starting a
year as a Visiting Professor at Princeton University, where
Allen was an Assistant Professor. In Japan, Kamiya had been a
lecturer in the Botany Department at the University of Tokyo,
where he returned to his research on shuttle streaming in
Physarum in 1945, and soon added experiments on rotational
streaming in Nitella (Kamiya 1989). In 1949, Kamiya became a
professor of cell physiology in the Department of Biology at
Osaka University. He came back to work with Seifriz in the
1950s, and in 1960, a grant from the Rockefeller Foundation
also allowed him to visit colleagues in the United States and
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Germany. These trips allowed him to get visiting appoint-
ments in 1962 and 1963 (Kamiya 1978). During the early 1960s,
Kamiya and Allen struck up a friendship and collaboration that
lasted their entire lives. Their first joint effort was the
organization of an international conference on “Primitive
Motile Systems” held in April of 1963 at Princeton (Allen and
Kamiya 1964).

The Primitive Motile Systems conference drew together
34 participants from the around the world to address basic
systems of cellular motion, primarily motion within cells. The
conference was later regarded as a watershed moment that
revitalized the field of motility research (Rebhun 1986), and, I
claim, spurred further research into the macromolecular basis
of streaming motion. With Allen as an organizer, the nature of
amoeboid motion was actively debated with over half of the
papers focused on amoebae or amoeboid movement. Allen’s
advocacy of front-end contraction was confronted head-on by
Goldacre, and discussed in great detail in the conference,
happily recorded in the symposium volume under “free
discussion”.

An acknowledged starting place for the conference was
the presence of contractile proteins that responded to ATP in
a fashion similar to actin and myosin in muscle tissues. A
number of papers discussed the microscopical evidence for
cellular fibers, the molecular evidence that they suggested
they are actin, and their possible role in cellular motility.

Fibrous proteins were the centerpieces of Robert
Jarosch’s presentation, as they had been the subjects of his
research in the preceding decade. Jarosch was an Austrian
microscopist, who worked in the Biological Research Division
of the Austrian Nitrate Works before succeeding Ewald Schild
at the Naturkundliche Station in Linz in 1962. In 1956, Jarosch
had reported that protoplasmic drops extracted from Chara
foetida contained fibrils that moved and formed polygons and
loops (Jarosch 1958). That year, Kamiya and his student,
Kiyoko Kuroda, replicated these results in Osaka with
protoplasm from Nitella flexis (Kamiya and Kuroda 1956).
Jarosch was a firm believer in the contraction theory of
motion and following the work of Linus Pauling and Francis
Crick sought to explain that motion in terms of the structures
of helices, which he modeled as elastic screws. The rotation,
pitch, and interaction of helices allowed Jarosch to postulate a
number of molecular mechanisms for movement at a time
when little was known about the molecular properties of
observed cellular fibers. In his paper for the Primitive Motile
Systems conference, Jarosch (1964) defended his elastic
screw model, while Kuroda (1964) presented results from
Nitella that suggested that the fibrils in isolated drops
displayed “a remarkable undulating motion”. This motion,
however, was the result of many smaller fibers coming
together to form larger structures, which suggested to
Kuroda that streaming motion could be produced by these
undulating fibers if they were organized in a cellular structure.

The search for fibrils was taken back to Physarum by Karl-
Ernst Wohlfarth-Bottermann from the University of Bonn in
Germany in his contribution to the conference (Wohlfarth-
Bottermann 1964). Building on earlier work by his laboratory
and others’ who found “filamentous structures” in different
species of amoeba, Wohlfart-Bottermann turned to Physarum
because of biochemical work by Loewy, Kamiya, and others
that suggested that there might be actin-like contractile

proteins in these slime molds. Using electron and phase-
contrast microscopy, Wohlfarth-Bottermann was able to
visualize these fibrils, assess their responsiveness to ATP,
and provide important cytochemical confirmation of Kamiya’s
biochemical studies of Physarum.

Despite the widespread interest in fibrils and contractility
at the Primitive Motile Systems conference, in the end, the
conference did not resolve the question of the nature of these
molecular mechanisms as much as mark them as a focal point
for further research. Consider the comments of Andrew
Szent-Györgi in the closing discussion, where he said: “At this
symposium there have been a number of references made
and experiments presented which indicate that some of the
filamentous structures and proteins may be similar to
actomyosin, and that the motility of many cells may be based
on a mechanism similar to contraction of muscle. I would like
to point out that even if this analogy proves to be correct, this
will not solve your problem.” As Szent-Györgi and others at
the conference knew all too well, it was not clear how the
actomyosin system actually worked in the early 1960s. Hugh
Huxley was developing the sliding theory of contraction, but
Szent-Györgi suggested that motion would be easier to
explain in terms of the action of polymers that converted
chemical energy to mechanical work through structural
changes (Szent-Györgi 1964, p. 626; Szent-Györgi 2004;
Huxley 1969; Cooke 2004). Szent-Györgi’s comments were
prescient: actin-myosin mechanisms for streaming would take
many years to establish, but, in the wake of the conference,
the hunt for fibrils and actin in plant cells accelerated.

When Kamiya returned to Osaka, he directed one of his
students, Eiji Kamitsubo to follow up on the work of Jarosch
and Kuroda. At the time, Kamiya himself had been developing
what he called the active shear theory for streaming that
located the site of motive force at the sol-gel interface
between stationary ectoplasm and moving endoplasm in
Nitella. His work with Kuroda measuring velocity profiles
supported this theory. The question remained, however, as to
the mechanism that operated at this interface. Kamitsubo’s
research using centrifuged and intact cells of Nitella visually
confirmed the presence of the fibrils detected by Jarosch and
Kuroda, and implicated them in the production of streaming
motion (Kamitsubo 1966a, 1966b). At the same time in
Princeton, New Jersey, Reiko Nagai, working with Lionel
Rebhun, also focused their attention on the ectoplasm-
endoplasm interface. Building on Kamitsubo’s research and
the focus on fibrils from the 1964 conference, Nagai and
Rebhun used an electron microscope to find bundles of
microfilaments at this interface (Nagai and Rebhun 1966). For
Nagai and Rebhun this visual evidence was the culmination of
a body of research that suggested that these filaments were
“the elements directly involved in developing this motive
force” (Nagai and Rebhun 1966, p. 587). After spending time
in Allen’s laboratory as a visitor, Kamitsubo reinforced these
results further by developing a method of dislodging
chloroplasts to create a window in Nitella or Chara that
made these fibrils visible with a light microscope (Kamitsubo
1972).

What was missing in the study of Nitella and Chara was
confirmation that the now visible fibrils were actin. In 1963,
Hugh Huxley had shown that heavy meromyosin forms a
complex with actin with a visually distinct arrowhead pattern.
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Harunori Ishikawa, Richard Bischoff, and Howard Holtzer
extended this reaction beyond muscle cells in 1969 to show
that many different kinds of cells that had not been previously
thought to contain actin produced the characteristic arrow-
head pattern when treated with heavy meromyosin (Ishikawa
et al. 1969). A number of plant biologists tried to use heavy
meromyosin to find actin in plants, butwere unsuccessful until
1974 when two labs, one at Stanford University, and one in
Cambridge, England, produced the telltale arrowheads.

Peter Hepler is a cell biologist who had earned a PhD at
Wisconsin in 1964 before accepting a post-doctoral position
with Keith Porter at Harvard in 1966 (Hepler et al. 2013). Hepler
developed a program of research on plantmicrotubules under
Porter and continued that research program as a faculty
member at Stanford University. Hepler knew the literature on
cytoplasmic streaming well, and knew many of the main
contributors from Woods Hole (Hepler 2014). When his
graduate student, Barry Palevitz, approached him about using
heavy meromyosin to look for actin in Nitella, he remembers
being skeptical that it would work, but agreed to let Palevitz
give it a try (Hepler 2014). Just as it had in muscle cells, the
actin in Nitella cells reacted with heavy meromyosin to form
the arrowhead pattern discernible under the electron micro-
scope (Palevitz et al. 1974; Palevitz and Hepler 1975). At
roughly the same time, Richard Williamson was performing
the same kind of experiment on the alga, Chara corallina
(Williamson 1974). The consilience of the results left no doubt
that plant cells contained actin at the site of cell motility.

But, remember Szent-Györgi’s admonition at the Primitive
Motile Systems conference, that finding actin is not enough to
explain streaming. The research of Nina Allen in the early
1970s illustrates the challenge of explaining streaming, even
after actin had been demonstrated in plant cells. Nina
Strömgren Allen was the daughter of Danish astronomer,
Bengt Strömgren, who worked for many years in the United
States at the Yerkes Observatory (Allen 2014). She met Bob
Allen when he spoke at the Smithsonian Institution in
Washington DC, and in 1970 they were married. She finished
her master’s degree that year, and her doctorate in 1973. By
that time, Bob Allen had moved from Princeton to SUNY
Albany where he served as Chair of the Biology Department.

Using Kamitsubo’s window technique with Nitella cells,
Nina Allen was able to visualize the coordinated motion of
fibers within the cells (Allen 1974). Based on these
observations, she postulated a theory of motion where the
undulating motion of microfilaments anchored in the
ectoplasm generated motion in the endoplasm. Allen
developed this theory in detail with careful calculations of
structures, force, and velocity backed by careful microscopic
observation. After the discovery of actin in Nitella, Bob and
Nina Allen grappled with the issue of the role of actin in
motility in their 1978 review of streaming in plants (Allen and
Allen 1978). The evidence for fibrils and filaments was
undeniable, but they were unclear whether the undulations
of those filaments seen so clearly in Nitella were actively
producing motion or passively being moved. Kamiya was not
convinced by Nina Allen’s proposal of undulating fibers driving
protoplasmic streaming, because he felt it could not produce
the kinds of velocity profiles that he observed and that formed
the basis of his active shear theory (Kamiya 1981). Instead,
influenced by research on sliding mechanisms in muscle,

especially that of his Japanese colleague Setsuro Ebashi,
Kamiya favored the idea that active shear and protoplasmic
motion was produced by myosin in the protoplasm sliding
along actin fibers (Kamiya 1986). Indeed, Kamitsubo had
suggested in 1972 that myosin on cellular particles in the
endoplasm attached to actin filaments anchored in the
ectoplasm or cortex and slid along them (Kamitsubo 1972).
In her review in 1980, Nina Allen considered this alternative,
and admitted that if the undulating fibers were putative actin
molecules, then it was possible that “networks of putative
myosin (also lacking positive biochemical identification) move
along the actin filaments” (Allen 1980, p. 795). In this view,
direct actin-myosin interactions produces sliding in plant cells
as it does in muscle. This would have the virtue of explaining
the active shearing in rotational motion as well as fountain
streaming and saltation by similar mechanisms, although the
Allens admitted in 1978 “there is no evidence to confirm this
idea” (Allen and Allen 1978).

Definitive evidence of myosin and then of actin-myosin
interactions in plants had to wait until the development of
motility assays in the mid-1980s and 1990s which led to the
current view that coherent cytoplasmic streaming, as in the
giant internodal cells of the Characeae, is accounted for by
myosin bound to organelles driving their movement against
anchored actin. Nevertheless, the roles of actin and myosin in
the motility of organelles as individuals (i.e., not in bulk
streaming flows) is far less clear, as for example, two reviews
elsewhere in this issue point out (Buchnik et al. 2015; Hawes
et al. 2015), and models might emerge that hearken back to
those of Nina Allen and otherswhere the filamentous network
is itself active.

Much earlier than plants, Physarum was widely accepted
to contain actin and myosin, beginning with Loewy’s work in
1952 (Loewy 1952; Kamiya 1960; Hatano and Tazawa 1968;
Shimmen 2007). This allowed biologists, such as Kamiya and
Wolhfarth-Bottermann, to posit that the mechanisms for
motion in Physarum were similar to the actin-myosin
interactions being posited to explain muscle contraction by
Huxley (Kamiya 1981; Wolhfarth-Bottermann 1979). Even
though the exact nature of the interactions between actin
and myosin were not known in Physarum, Kamiya, Wohlfarth-
Botterman, and others began to consider how those
interactions could be regulated.

By the 1970s, explaining the regulation of motion in
Physarum became the problem of explaining the pulse of
protoplasm. It was taken as a given that motion would be
explained in terms of actin and myosin, but how they
produced the pulsations of shuttle motion was not.
Wohlfarth-Bottermann framed this problem as the search
for an oscillator; “a ‘pacemaker’ or ‘trigger’ which governs
contractions” (Wohlfarth-Bottermann 1979, p. 19). Building on
the analogy again to muscle contraction, a number of
biologists, including Kamiya, Hotano, and Wohlfarth-Botter-
mann, considered fluctuations in ATP and calcium as potential
oscillators. Both showed some relationship to the rhythmicity
of protoplasmic motion, but not enough for a definitive
declaration by either Kamiya in 1981 or Wohlfart-Bottermann
in 1979. Contemporary efforts by Kenji Matsumoto, Seiji
Takagi, and Toshiyuki Nakagaki, for example, to study the
biophysics of shuttle streaming, to develop mathematical
models of oscillators, and to continue to investigate chemical
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triggers like calcium fall into this latest tradition of explaining
the pulse of protoplasm, but this time as a problem of cellular
regulation (Matsumoto et al. 2008).

CONCLUSION
During the first heyday of contractile explanations for
protoplasmic streaming in the nineteenth century, biologists
saw a natural analogy between the contractile fibers of
muscle and the supposed contractile fibers in the cell. Just as
circulating blood was driven by the heart’s contractions, the
protoplasm was driven by the cell’s fibrous contractions. The
revival of contraction in the mid-twentieth century also
embraced the analogy to muscle contraction as Seifriz,
Kamiya, and others took the pulse of Physarum. The major
difference between these two eras lies in the approach that
biologists in each took toward cellular fibers. Twentieth
century observations of cellular fibers at sites of motive force
combinedwith amacromolecular perspective led biologists to
embrace explanations based first on the contractile proper-
ties of proteins and later, following muscle research,
explanations based on protein interactions. Explaining the
pulse of protoplasm thus moved from a problem of explaining
the mechanism of contraction to a problem of explaining how
contraction could be regulated to produce the ebb and flowof
protoplasm.
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