
Dartmouth College Dartmouth College 

Dartmouth Digital Commons Dartmouth Digital Commons 

Dartmouth College Undergraduate Theses Theses and Dissertations 

6-1-2011 

Reader-Writer Exclusion Supporting Upgrade and Downgrade with Reader-Writer Exclusion Supporting Upgrade and Downgrade with 

Starvation Freedom Starvation Freedom 

Matthew Elkherj 
Dartmouth College 

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Elkherj, Matthew, "Reader-Writer Exclusion Supporting Upgrade and Downgrade with Starvation Freedom" 
(2011). Dartmouth College Undergraduate Theses. 70. 
https://digitalcommons.dartmouth.edu/senior_theses/70 

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at 
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an 
authorized administrator of Dartmouth Digital Commons. For more information, please contact 
dartmouthdigitalcommons@groups.dartmouth.edu. 

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/70?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu


Dartmouth Computer Science Technical Report TR2011-68

READER-WRITER EXCLUSION SUPPORTING UPGRADE AND

DOWNGRADE WITH STARVATION FREEDOM

Matthew Elkherj

Thesis Advisor: Prasad Jayanti

Abstract. In this thesis we give a constant Remote-Memory-Reference (on
CC systems) reader-writer exclusion algorithm supporting upgrade and down-
grade, built from a reader-writer exclusion algorithm by Jayanti and Liu. The
algorithm is starvation-free, and allows for repeated upgrades and downgrades.

1. Introduction

Reader-Writer exclusion, described in [5] and [1], has been a problem of interest
to computer scientists from as early as 1971, and has been speci�ed in a variety
of ways over these years. Like many other locking problems, an algorithm that
solves Reader-Writer exclusion can be broken into a remainder section, doorway,
waiting room, critical section, and exit section. The doorway and waiting room are
together called the try section. This format is used for the algorithm in [1], and
a similar format was even used in Lamport's Bakery algorithm [7]. Processes that
don't care to write or read stay in the remainder section, and don't execute the
rest of the sections. Processes that want to read/write will try to enter the Critical
Section (abbreviated CS), the section where one could imagine the reading/writing
of a bu�er happening. To do so, a process must �rst register interest by completing
the doorway, wait for its turn in the waiting room, and once, done register its
completion in the exit section to allow other processes to enter the CS. A solution
to a version of the reader-writer exclusion problem thus involves giving code for the
reader-try-section, writer-try-section, reader-exit-section, and writer-exit-section.

The solution in [1] breaks the problem down into three distinct versions: when
writers have priority over readers to enter the CS, when readers have priority over
writers to enter the CS, and when neither class has priority and we require simply
that no process starves. It is easy to intuit why the requirements of writer-priority
and reader-priority must give distinct solutions, but why can't an algorithm be both
reader/writer-priority and starvation-free? The reason is that, in both the writer-
priority case and reader-priority case, it is possible to imagine a lower priority
process starving (executing in�nitely many steps without getting into the CS) if
one higher-priority process after another blocks it. This follows directly from the
properties speci�ed in [1]. As a result, starvation-freedom is a completely di�erent
requirement than the priority requirements, and requires a separate solution.

Such a solution has been discovered by Jayanti and Liu, and we add to this
solution functionality for upgrading and downgrading. The upgrade/downgrade
functionality provided allows readers and writers the �exibility to change their
mind as many times as desired once in the Critical Section. This means a reader
can upgrade, then downgrade, then upgrade, ... Likewise, a writer can execute a
downgrade, then upgrade, ... A reader also has the �exibility to attempt upgrading

1



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Figure 2.1. Cache-Coherent (CC) Model, a shared memory
model where writes immediately change the variables in shared
memory, but not the caches of other processes

as many times as it wants, assuming it keeps failing. To rigorously specify the
problem, we move on to the system model.

2. System Model

We can only strive for an algorithm that satis�es certain properties if we accu-
rately specify the system on which the algorithm will run. The exclusion problem we
are looking to solve will certainly require some communication between processes, so
we are looking for some distributed system on which to run our algorithm. We can
think of interprocess communication as writing into memory locations that other
processes can see, and two commonly used systems of this kind are Distributed
Shared-Memory (DSM) and Cache-Coherent (CC) systems, as discussed in [2]. It
is fruitful to focus on minimizing Remote-Memory-References (RMR) in designing
an algorithm, since this is often the major cost incurred on practical distributed
systems.

It is impossible to obtain a constant-RMR algorithm on a DSM architecture
that satis�es the properties we want of Reader-Writer exclusion [3]. Thus, we only
consider Cache-Coherent systems to run our algorithm on.

A Cache-Coherent System is one in which there is shared memory that all pro-
cesses can access, and each process has a cache of all shared variables and its own
local memory to perform local computations. The Cache-Coherent architecture
ensures that each processes' local cache of shared variables is consistent in the fol-
lowing manner: when a shared variable X is written, every process' cache of X is
invalidated. If another process p wants to read X, a cache miss occurs, and p's
cache of X gets a copy of the updated value of X in shared memory. On the other

2



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

hand, if a process p is reading a shared variable and no change has been to the
variable, it can just read its cache without a miss.

The system we are using must also support some primitive shared-memory ob-
jects. We describe each object and its RMR cost per operation:

Register: An n−process register object O allows n processes to read and
write to O. A read of register O into variable x local to some process is
denoted x = O. A write to register O of the value 10 is denoted O = 10.
When a process p writes writes to object O, even if it doesn't change the
value of O in writing, a cost 1 RMR is incurred upon p. When a process
p reads O, if the value hasn't been written to (even if the write changed
nothing!) since the last time it read, then p experiences a cache-miss and
is charged 1 RMR. If p reads O but no process has written to O since p's
last read of O, then p isn't charged an RMR.

Fetch-and-Add(abbreviated F&A): An n−process F&A object O allows
any of n processes to locally store the current value ofO and increment/decrement
the value of O in a single atomic step. A F&A operation by some process
that stores the value of O into x and increments the value of O by 12 is
denoted x = F&A(O, 12). Any F&A(O, c) by process p, where c 6= 0, is
changing the value of O and thus costs p 1 RMR. A The F&A objects we
want also support reading, denoted x = O. The cost of reading a F&A
object is charged to the calling process p like the read of a register: When
p reads O, if the value hasn't been written to since the last time it read,
then p experiences a cache-miss and is charged 1 RMR. If p reads O but
no process has written to O since p's last read of O, then p isn't charged
an RMR.

Compare-and-Swap(abbreviated CAS): An n−process CAS object O
allows any of n processes to call b = CAS(O, x, y) or z = O. If the value of
O and x are equal, then y is stored in O and true is returned. Else, false
is returned. z = O reads the value of O and stores it in the local variable
z. Any CAS operation on an object O by process p, whether it succeeds
or fails, costs p 1 RMR. A read of O by process p costs p 1 RMR i� a CAS
of O has happened since p's last read of O. Else, a read costs process p 0
RMR's.

All three of these objects were used in the algorithm in [1], and are commonly
studied objects in the �eld of distributed computing. It is reasonable to assume
that atomic registers are supported on most modern architectures. In [4], it is stated
that CAS is supported on many modern architectures, such as multiprocessors based
on UltraSparc and Itanium processors.

The state/con�guration of the system at any point in the execution of an algo-
rithm can be described by the values of shared variables, local variables, and the
program counter (the line number in the algorithm) of each process. We will use
the same conventions for steps, runs, and reachability as [1], as quoted from this
below:

�A step is a triple (C, p, C ′) such that C and C ′ are con�gurations,
p is a process name, and the execution of a program statement by
p in C results in C ′ . We say p took the step, and C and C ′ are
the start and end con�gurations of the step respectively. A run
from a con�guration C is a (�nite or in�nite) sequence of steps

3



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

(C, p0, C1), (C1, p1, C2), (C2, p2, C3) where the �rst con�guration is
C and the end con�guration of each step is the start con�guration
of the next step. A run refers to a run from the initial con�guration.
A con�guration C is reachable if either C is the initial con�guration
or there is a �nite run such that C is the end con�guration of the
last step of.�

3. Properties

At any con�guration, a process can be of exactly one of the following 10 types:
normal reader/writer, upgrading reader/writer, downgradingreader/writer, up-

graded reader/writer, downgraded reader/writer.
A normal process is one that has neither upgraded nor downgraded in its most

recent attempt. An upgrading/downgrading process is one that is currently up-
grading/downgrading. An upgraded/downgraded process is one that has upgraded
or downgraded respectively in its most recent attempt.

A process is a reader/writer based on what entry section it executed in its most
recent attempt.

An attempt is a particular execution of the Try and Exit sections by a process.
A process crashes in an run σ if it takes only �nitely many steps in the run. An
attempt by r doorway precedes an attempt by r′ if r completes the doorway in its
attempt before r′ begins its doorway.

Mutual Exclusion: If a normal writer or upgraded process is in the CS,
then no other process is in the CS

Bounded Exit: There is a b such that in every run, every process completes
the exit section in at most b of its steps

First-Come-First-Served (FCFS) among writers: If w and w′ are any
two writer attempts in a run and w doorway precedes w′, then w′ does not
enter the CS before w

First-in-First-Enabled (FIFE) among readers: Let r and r′ be any two
reader attempts in a run such that r doorway precedes r′. If r′ enters the
CS before r, then r is enabled to enter the CS at the time r′ enters the CS

Concurrent Entering: There is an integer b such that, if σ is any run from
a reachable con�guration such that all writers are in the Remainder section
in every con�guration in σ and there are no upgraded or upgrading readers
in the CS or exit section, then every read attempt in σ executes at most b
steps of the Try section before entering the CS.

Starvation Freedom: If no process crashes in an in�nite run, then all at-
tempts complete in that run

Upgradeability: If throughout an upgrade all readers are in the remainder
section, then the upgrade will succeed.

Bounded Upgrade: There is a b such that in every run, every upgrading
process completes the upgrade procedure in at most b of its steps

Bounded Downgrade: There is a b such that in every run, every downgrad-
ing process completes the downgrade procedure in at most b of its steps

Constant RMR: There is a b such that every attempt uses at most b RMR's,
not including the upgrade and downgrade procedures.

These properties are derived from properties stated in [1], modi�ed to account for
upgrading and downgrading.

4



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Shared Variables

X ∈ {0, 1} × N init (0, 0)
Y ∈ N× N init (0, 0)
U ∈ {0, 1, 2} init 0
V ∈ {true, false} init true
W ∈ {0, 1} init 0
Flag ∈ {true, false} init false

Writer-Entry

1 (−, a) = F&A(X, (1, 0))
2 (−, b) = F&A(Y, (a, 0))

if a 6= b
3 wait till Flag = true
4 Flag = false
5 F&A(Y, (−a, 0))

Writer-Exit

6 W =W

Reader-Entry

7 (c,−) = F&A(X, (0, 1))
7.1 CAS(U, 1, 0)
7.2 if (U = 2)
7.3 wait till V = true
8 wait till W = c

Reader-Exit

9 (d, e) = F&A(Y, (0, 1))
if (d = e+ 1)

10 Flag = true

Upgraded-Exit

10.1 V = true
10.2 U = 0
10.3 (d, e) = F&A(Y, (0, 1))

if (d = e+ 1)
10.4 Flag = true

Upgrade

11.1 (−, a) = Y
11.2 (−, b) = X

if b− a = 1
11.3 if CAS(U, 0, 1)
11.4 (−, c) = X

if c = b
11.5 V = false
11.6 return CAS(U, 1, 2)
11.7 else U = 0

return false

Writer-Downgrade

12.1 F&A(X, (0, 1))
12.2 W =W

Upgraded-Downgrade

13.1 V = true
13.2 U = 0

Figure 4.1. Single-Writer Algorithm

4. Single-Writer Algorithm and Intuition

The original algorithm, consisting of all non-numbered lines (i.e. lines 1-10 not in-
cluding 7.1-7.3) was developed by Jayanti and Liu. This algorithm is a single-writer,
multi-reader starvation-free and writer-priority reader-writer exclusion algorithm.
Note: it is possible to obtain starvation-freedom and writer-priority since only one
writer is allowed. With more than one writer and writer priority, readers could
starve as described earlier.
4.1. Original Algorithm, Without Upgrade/Downgrade. The intuition be-
hind the algorithm in is as follows:
X = (a, b), where a is the number of times the writer has completed the doorway

modulo 2, and b is the number of times readers passed through the doorway.
5



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Y = (a, b), where a is the number of times readers have completed the doorway
before the current writer has entered, 0 if the writer is in the doorway or remainder
section. b is the number of readers that have begun exiting.
W ∈ {0, 1} the number of times the writer has exited modulo 2
Flag ∈ {true, false} whether the writer is enabled to enter the CS.
Line-by-line commentary:
1. The writer is executing the doorway, just line 1, so it increases X[0] and saves

the number of readers, X[1], for future reference. Note: any readers after this point
will have executed their doorway after the writer, so the number of readers that
doorway precede the writer is exactly the number of readers saved from X[1].

2. The writer records the number of reader attempts that doorway precede it in
Y [0] by incrementing Y [0] by that amount.

3. If there are readers that have completed the doorway but not begun exiting,
then the writer waits on the readers

4. The writer waits until the last reader to enter before it wakes the writer up.
5. The writer resets Y [0] to 0
6. The writer increments mod 2 the number of times it has exited, enabling

readers waiting on W to enter the CS.
7. The reader increments the entry count in X[1] and saves X[0], which indicates

whether which attempt a writer is in.
8. The reader waits until the writer is in the remainder section, ie when the

number of times the writer has exited is the number of times the writer has entered
mod 2.

4.2. With Upgrade/Downgrade. U ∈ {0, 1, 2}, where 0 indicates no process
is attempting to upgrade, 1 indicates a process is attempting to upgrade, and 2
indicates a process will succeed in upgrading
V ∈ {true, false} true readers wait on V instead of U when a process is up-

grading. This separation of U and V is to decrease RMR's
7.1 If an upgrading is happening that didn't record my increment of X, stop it

by setting U back to 0
7.2 If an upgrade succeeded, wait on V , which the upgraded process will change

to wake me up.
7.3 Wait on V
10.1 I've upgraded, now let waiting readers go by setting V = true
10.2 Allow future upgrades. If U stays 2, then no process will be able to suc-

cessfully CAS U .
10.3 Wake up the writer by executing the reader exit section.
11.1 Get the number of readers that have entered. This is done after getting

the number of exited readers to ensure, if #entered−#exited = 1 at the moment
#entered is checked, readers are only in lines 7,10, or 10.4. Since I am upgrading,
I am registered as a reader in X (even if I started as a writer), so I will account for
the 1 in the di�erence between entered and exited readers.

11.2 There are no readers but me except in lines 7,10, or 10.4. This check
prevents multiple readers from upgrading simultaneously, as one would detect the
other's presence and fail immediately. The reason to avoid this: let's say lines
11.1 and 11.2 replaced line 11.4, and the if statement in line 11.2 was removed.
Let's say only a single reader is outside the remainder section, and it executes until
reaching the CAS(U, 1, 2) line. Just before it executes this line, another reader

6



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

executes through line 7.1, setting 0 → U , all the way to CAS(U, 0, 1) in upgrade.
Now U is 1, and the original reader will succeed in CAS(U, 1, 2), giving and an
(upgraded, reader) and (normal, reader) in the CS simultaneously.

11.3 Since only one upgrading process is at this point, setting U to 1 provides a
way to check whether a reader has executed line 7.1.

11.4 Check that no more readers have entered. At this line, if c = b then I am
the only reader not in lines 7,10, or 10.4.

11.5 Setting V here won't block any readers, since no readers are at line 7.3
11.6 If an upgrade gets to this line, when it executed
11.7 I failed to upgrade, so set U back to 0 in case it is still 1
12.1 Pretend I'm an entering reader. I, now a writer, am going to �become� a

reader
12.2 Exit as a writer, now I'm fully a reader
13.1 Setting V = true frees all processes waiting on upgraded processes.
13.2 Setting U = 2 allows more processes to upgrade.

5. Invariants

Inv1 := PCw = 1⇒
1 Flag = false
2 X.1 =W
3 Y.1 = 0
4 ∀r, (PCr ∈ {7.1− 8} ⇒W = r.c)
5 ∀r, PCr 6∈ {10, 10.4}

Inv2 := PCw = 2⇒
1 Flag = false
2 X.1 6=W
3 Y.1 = 0
4 [#r : (PCr ∈ {7.1− 8} ∧W = r.c)∨

PCr ∈ {9, 10.1− 10.3, 11.1− 12.2}] = w.a− Y.2
5 ∀r, PCr 6∈ {10, 10.4}

Inv3 := PCw = 3⇒
Flag = true⇒

1 X.1 6=W
2 Y.1 = Y.2 = w.a
3 ∀r, ((PCr ∈ {7.1− 8} ⇒ r.c 6=W ) ∧ PCr 6∈ {9− 12.2})

Flag = false⇒
4 X.1 6=W
5 Y.1 = w.a
6 [#r : (PCr ∈ {7.1− 8} ⇒ r.c =W )∨

PCr ∈ {9, 10.1− 10.3, 11.1− 12.2}] = Y.1− Y.2

7 [#r : (PCr ∈ {10, 10.4})] =

{
1

0

if Y.2 = Y.1

if Y.2 6= Y.1

Inv4 := PCw = 4⇒
1 Flag = true
2 X.1 6=W

7



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

3 Y.1 = Y.2 = w.a
4 ∀r, ((PCr ∈ {7.1− 8} ⇒ r.c 6=W ) ∧ PCr 6∈ {9− 12.2})

Inv5 := PCw = 5⇒
1 Flag = false
2 X.1 6=W
3 Y.1 = Y.2 = w.a
4 ∀r, ((PCr ∈ {7.1− 8} ⇒ r.c 6=W ) ∧ PCr 6∈ {9− 12.2})

Inv6 := PCw = 6⇒
1 Flag = false
2 X.1 6=W
3 Y.1 = 0
4 Y.2 = w.a
5 ∀r, ((PCr ∈ {7.1− 8} ⇒ r.c 6=W ) ∧ PCr 6∈ {9− 12.2})

Inv1−6 := Inv1 ∨ ... ∨ Inv6

InvG := //global invariant

1 [#r : PCr ∈ {7.1− 9, 10.1− 10.3, 11.1− 12.2}] = X.2− Y.2
2 X.1, X.2, Y.1, Y.2 ≥ 0
3 [#r : PCr ∈ {10.1− 10.3, 11.3− 11.6, 12.1, 12.2}] ≤ 1
4 U = 2 ⇐⇒ ∃r, PCr ∈ {10.1, 10.2, 12.1, 12.2}
5 ∃r, PCr ∈ {10.1, 11.6, 12.1} ⇒ V = false
6 ∀r, (PCr ∈ {11.5, 11.6} ∧ U = 1)⇒

(∀q 6= r, PCq 6∈ {7.2− 9, 10.1− 10.3, 11.1− 12.2})
7 ∀r, PCr ∈ {10.1, 12.1} ⇒

(∀q 6= r, PCq 6∈ {8, 9, 10.1− 10.3, 11.1− 12.2})
8 (∀r, PCr 6∈ {10.1, 12.1})⇒

(V = true ∨ (U 6= 2 ∧ ∀q, PCq 6= 7.3))
9 Y.2 ≥ r.a
10 ∃r, PCr ∈ {11.3− 11.6} ⇒ ∀q, PCq 6= 7.3
11 ∀r, PCr 6∈ {11.4− 11.7} ⇒ U 6= 1

6. Proof of Properties From Invariants

Lemma 1. Informally: For some reader r, once W = r.c it stays that way until

leaving the try section. Formally: Let r be a reader in a reachable con�guration

C such that PCr ∈ {7.1 − 8} and W = r.c. If after a single step (C, q, C ′),
PCr ∈ {7.1− 8} in C ′, then W = r.c in C ′.

Since r.c is local to r, r.c is not modi�ed in lines 7.1 − 8, and r stays on lines
7.1− 8, the step doesn't change r.c. It is thus su�cient to show W hasn't changed
from C to C ′.

For W = rc to hold in C, the writer can't be at line 6, since Inv6.5 would imply
r.c 6= W . Notice that line 6 is the only line where W is changed. Thus, the step
won't change W .

Mutual Exclusion. If a normal writer is in the CS, then the writer is at line 6
and by Inv6.5, no reader is in the CS.

8



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

If an upgraded process p is in the CS, then PCp ∈ {10.1, 12.2} so directly by
InvG.3, no other process is in the CS.

First-Come-First-Served (FCFS) among writers. Ensured by the FCFS lock

First-in-First-Enabled (FIFE) among readers. Since r′ enters the CS, at
some point it is at line 8 and W = r′.c. If r.c = r′.c, then when W = r′.c W = r.c,
so by lemma 1 r will not be blocked at line 8. If r.c 6= r′.c, then after r executes
line 7 and before r′ executes line 7, X.1 is must have been increased. Since X.1 is
only changed at line 1, the writer must have been at line 1 and executed 1 between
the time r executes 7 and r′ executes 7. This means Inv4.4, W = r.c, so r will not
be blocked at 8 after the point when the writer is at line 1.

If r is blocked or will be blocked in bounded number of its own steps, V =
false∧ (U = 2∨∃q, PCq = 7.3). By InvG.8, this means ∃s, PCs ∈ {10.1, 12.1}. By
InvG.7, this means r′ is not in the CS while r is blocked. Thus at any point while
r′ is in the CS, r is not blocked. Even when r′ leaves the CS, r stays unblocked
since V will not be able to change back to false, and U will not be able to change
back to 2 because no process will be able to execute line 11.4 successfully. This
follows directly from InvG.1, the fact that r is on one of lines 7.1−8, and r.a ≤ Y.2
since Y only increases.

Concurrent Entering. Concurrent entering assumes all writers are in remainder
and there are no upgraded processes in the CS or exit section. Since the writer
is at line 1, by Inv.1 a reader will never be blocked at line 8. Since there are no
upgraded reader processes in the CS or exit section, there are no processes at lines
12.1 or 10.1, so by InvG.8 a reader won't wait at line 7.3.

Starvation Freedom. A writer can't starve: Assume for writer w, PCw = 3 and
Flag = false. Since Y.1, Y.2 ≥ 0 by InvG.2, either Y.1− Y.2 > 0 or Y.1− Y.2 = 0.
If Y.1 − Y.2 > 0, then by Inv3.6 there are Y.1 − Y.2 readers ready to execute one
of lines 9 or 10.3 in a bounded number of their own steps, unless they are blocked
at 7.3. A reader r that is blocked at 7.3 will only be blocked until the upgraded
process �nishes exiting, and at this point by the argument for FIFE, r will not be
blocked at 7.3 in the current attempt. The last to execute 9 or 10.3 will do so when
Y.1− Y.2 = 1, and will enter line 10 and set Flag = true.

Else, Y.1 = Y.2, so by Inv3.7 some process will be poised to set Flag = true.
A reader can't starve: Assume there is a reader r such that PCr = 8 and

W 6= r.c. Since the writer doesn't starve, it will at some point end up at line 6.
When the writer executes line 6, it will then be at line 1, and W = r.c. By Lemma
1 W will stay equal to r.c until r enters the CS.

Assume reader is at line 7.3 and V = false. The contrapositive of InvG.4 says
(V = false ∧ (U = 2 ∨ ∃q, PCq = 7.3)) ⇒ (∃r, PCr ∈ {10.1, 12.1}). By this, there
is a process t ready to execute one of lines 10.1 or 12.1 and set V = true.

Upgradeability. We need to show that if all readers are in the remainder sec-
tion, an upgrade will succeed. Upgrade can fail at lines 11.2, 11.3, 11.4, and
11.6. Upgrade won't fail at line 11.2 since there have been no other readers in
lines {7.1 − 9, 10.1 − 10.3, 11.1 − 12.2} while lines 11.1 and 11.2 were executed, so
b− a = 1 by InvG.1.

Upgrade won't fail at line 11.3 since by InvG.11 U 6= 1.
9



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Upgrade won't fail at line 4 since no readers have entered, and X.2 hasn't
changed.

Upgrade won't fail at line 11.6 since there have been no other readers to execute
lines 11.7 and 7.1, so U = 1.

Bounded Upgrade/Downgrade/Exit. Look at the algorithm: for the upgrade/downgrade/exit
procedures, there are �nitely many non-looping steps and all of the complete im-
mediately

Constant RMR. Every line in theWriter-Entry, Reader-Entry, Writer-Exit, Reader-
Exit, and Upgraded-Exit section except 3, 7.3, and 8 complete using at most 1
RMR. We will show at each of these lines, a process incurs constant RMR's before
proceding.

A writer waiting at 3 will take an RMR hit i� Flag is written (even if it isn't
changed, recall we're not assuming smart cache). Flag can only be written at lines
4, 10, and 10.4. Line 4 won't be executed since the writer is at 3, and there is only
one writer. Once one of lines 10 or 10.4 is executed, Flag = true, and since Flag
is only set to false at line 4, Flag stays true. By Inv3.3 from this point on non
processes can be at line 10 or 10.4, so Flag can't be written again. Thus a waiting
writer at 3 will be charged at most one RMR.

If there is a reader at 7.3, then by the contrapositive of InvG.10 there are no
processes at lines 11.3 − 11.6. The only processes that can set V are at 10.1 and
12.1, and by InvG.3 there is at most 1. After this process leaves, since no processes
can be at 11.3 − 11.6 while the reader is at 7.3, no processes execute lines 10.1 or
12.1 before the reader leaves line 7.3.

If there is a reader at line 8, by the argument in Lemma 1 below W is changed
only once, so only one RMR is charged.

7. Proof of Invariants

Inv1−6 holds in the initial con�guration: Inv2, ...Inv6 hold trivially since PCw = 1.
Inv1 also holds since Flag′ = false, X.1 = 0 = W , Y.1 = 0, and there are no
readers at lines 7.1− 10.

InvG holds in the initial con�guration. As mentioned in the statement of the algo-
rithm, initially X = (0, 0), Y = (0, 0), U = 0, V = true, W = 0, and Flag = false.
X.1 = X.2 = Y.1 = Y.2 = 0, and all processes are in the remainder section (ie
PCw = 1 and ∀r, PCr = 7). InvG.1 holds: X.2 − Y.2 = 0 and there are no pro-
cesses at lines 7.1− 9, 10.1− 10.3, 11.1− 12.2. InvG.2 holds: X.1, X.2, Y.1, Y.2 ≥ 0.
InvG.3 holds: there are also no processes at 10.1 − 10.3, 11.3 − 11.7, 12.1, 12.2.
InvG.4 holds: U 6= 2 and there are no processes at 10.1...12.2. InvG.5 holds:
There are no processes at 10.1, 11.7, 12.1. InvG.6 holds: There are no processes at
lines 11.5, 11.6. InvG.7 holds: There are no processes at 10.1, 12.1. InvG.8 holds:
V = true makes InvG.8 (something)⇒ true, or true.

Note: We will discuss the various scenarios where some process is at a par-
ticular line and takes a step. When discussing a variable, let's say X, in
such scenarios, we will use the convention: X to talk about the variable
and the value of the variable before the step, and X ′ to represent the value
of the variable after the step.

10



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Assume Inv1−6 holds when PCw = 1, and a reader takes a step. Then Inv1−6 still

holds: Inv1 still holds: no reader can change Flag (since by Inv1, no reader can
be at lines 10, 10.4), X.1, Y.1, or W . Since W ′ =W , and a reader can only change
its r.c or enter lines 7.1 − 8 by executing line 7, a reader step can only violate
∀r, PC ′r ∈ {7.1− 8} ⇒ r.c′ = W ′ by executing line 7. When a reader executes line
7, by Inv1 X.1 = W , so when that reader enters line 7.1 r.c′ = W ′. A reader will
never enter lines 10 or 10.4 since at lines 9 and 10.3, by Inv1 Y.1 = 0, by InvG
Y.2 ≥ 0, so Y.1 6= Y.2 + 1.
Inv2, ...Inv6 hold trivially since PC ′w = 1.

Assume Inv1−6 holds when PCw = 1, and a writer takes a step. Then Inv1−6
still holds: Inv2 holds: Flag,X.2, Y.1, Y.2,W don't change, so Flag′ = false and
Y.1′ = 0. Since only the writer is taking a step at line 1, and Inv1 held before
the step, no readers will enter lines 10 or 10.4. w.a′ = X.2′, so w.a′ − Y.2′ =
X.2− Y.2 = [#r : PC ′r ∈ {7.1− 9, 10.1− 10.3, 11.1− 12.2}] by the global invariant,
since ∀r, PCr = PC ′r. Since ∀r, r.c′ = r.c, W ′ = W , and PC ′r = PCr, ∀r, PC ′r ∈
{7.1 − 8} ⇒ W ′ = r.c′, so [#r : PC ′r ∈ {7.1 − 9, 10.1 − 10.3, 11.1 − 12.2}] =
[#r : (PC ′r ∈ {7.1− 8} ∧W ′ = r.c′)∨PC ′r ∈ {9, 10.1− 10.3, 11.1− 12.2}], and thus
[#r : (PC ′r ∈ {7.1−8}∧W ′ = r.c′)∨PC ′r ∈ {9, 10.1−10.3, 11.1−12.2}] = w.a′−Y.2′.
Since X.1 =W Inv1, and X.1

′ = X.1 + 1, X.1′ 6=W ′.
Inv1, Inv3, ...Inv6 hold trivially since PC ′w = 2.

Assume Inv1−6 holds when PCw = 2, and a reader takes a step. Then Inv1−6 still

holds: Inv2 still holds: no reader can change Flag (since no reader can be in lines
10 or 10.4 by Inv2), X.1, Y.1, orW . Since X.1 6=W , the number of readers at lines
7.1−8 such that W = r.c will not change from a reader executing line 7. Thus, the
only way for [#r : (PCr ∈ {7.1−8}∧W = r.c)∨PCr ∈ {9, 10.1−10.3, 11.1−12.2}]
to change is for a reader to execute one of lines 9 or 10.3. No reader will change
w.a, and a reader will only change Y.2 on lines 9 or 10.3, so w.a − Y.2 will only
change by a reader executing lines 9 or 10.3. If a reader executes line 9 or 10.3,
[#r : (PCr ∈ {7.1−8}∧W = r.c)∨PCr ∈ {9, 10.1−10.3, 11.1−12.2}] will decrease
by 1 and w.a− Y.2 will decrease by 1, maintaining the invariant. A reader will not
enter lines 10 or 10.4 since at lines 9 and 10.3, by Inv2 Y.1 = 0, by InvG Y.2 ≥ 0,
so Y.1 6= Y.2 + 1.
Inv1, Inv3, ...Inv6 hold trivially since PC ′w = 2.

Assume Inv1−6 holds when PCw = 2, and a writer takes a step. Then Inv1−6 still

holds: Inv3 holds: Only Y.1 has changed (increased by w.a), so by Inv2 Flag
′ =

false, X.1′ 6= W ′, and Y.1′ = w.a′ + 0 = w.a′ by Inv2. Thus Y.1′ − Y.2′ =
w.a′−Y.2′ = [#r : (PC ′r ∈ {7.1−8}∧W ′ = r.c′)∨PC ′r ∈ {9, 10.1−10.3, 11.1−12.2}]
since only the writer took a step. When the writer executes line 2 and ends up on
line 3, the if statement on line 2 succeeded so w.a 6= Y.2 and w.a′ 6= Y.2′. Thus
Y.1′ = w.a′ 6= Y.2′. We know from Inv2 that [#r : PCr ∈ {10, 10.4}] = 0, so Inv3.7
holds.
Inv5 holds: Only Y.1 has changed (increased by w.a), so by Inv2 Flag

′ = false,
X.1′ 6= W ′, and Y.1′ = w.a′ + 0 = w.a′ by Inv2. When the writer executes line
2 and ends up on line 5, the if statement on line 2 succeeded so w.a = Y.2 and
w.a′ = Y.2′. Because w.a = Y.2, by Inv2.4 [#r : (PC ′r ∈ {7.1 − 8} ∧ W ′ =
r.c′)∨PC ′r ∈ {9, 10.1− 10.3, 11.1− 12.2}] = 0, which combined with Inv2.5 implies
Inv5.4.

11



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Inv1, Inv2, Inv4, Inv5, Inv6 hold trivially since PC ′w = 3.

Assume Inv1−6 holds when PCw = 3, and a writer takes a step, staying at 3. Then

Inv1−6 still holds: No local or shared variables have changed, and no program
counters have changed, so Inv1−6 trivially holds.

Assume Inv1−6 holds when PCw = 3, and a reader takes a step. Then Inv1−6 still

holds: Inv3 still holds: Readers don't change X.1 and W , so X.1′ 6= W ′. Readers
don't change Y.1 either, so Y.1′ = w.a′.

• If Flag = true, since Inv3.3 says there are no readers at lines 10 or 10.4
before, Flag′ = true. The only way line Inv3.3 could conceivably change
from the reader step is if a reader executed line 7 or line 8. If a reader r
executes line 7, since X.1 6=W , r.c′ 6=W ′ and Inv3.3 still holds. If a reader
executes line 8, we know r.c 6=W , so the reader stays on 8 and Inv3.3 isn't
a�ected. No reader was at line 9 or 10.3 before by Inv3.3, so Inv3.2 means
Y.2 doesn't change and implies Inv3.2 after.

• If Flag = false, then *the* reader taking a step is at one of lines 10 or 10.4,
or it is not. If the reader is at one of these lines, then Flag′ = true and
this is the only change that happens, so by Inv3 X.1

′ = W ′, Y.1′ = w.a′,
and by Inv3.7 Y.2

′ = Y.1′. Thus Y.1′ − Y.2′ = 0, so by Inv3.6 before the
step combined with Inv3.7 before and the fact that the reader is leaving
line 10/10.4 implies Inv3.3 after the step.

Else, the reader is taking a step at some line that is not 10 or 10.4,
so Flag′ = false. No reader can change X.1, Y.1 or W so X ′ 6= W ′ and
Y.1′ = w.a′. A reader can only conceivably violate Inv3.6 if it executes one
of lines 7, 8, or 9/10.3. A reader r that executes line 7 will have r.c′ 6=W ′

since by Inv3.4 X.1 6=W , not changing either side of Inv3.6. If r executes
lin 8, then PC ′r ∈ {9, 11.1}, and Y.1/Y.2 aren't changed, so neither side of
Inv3.6 changes and Inv3.6 holds. If r executes 9/10.3, it increases Y.2 by 1
and is no longer counted in the left side of Inv3.6, so Inv3.6 holds. If some
reader is at lines 10 or 10.4, then by Inv3.7 Y.2 = Y.1, so Y.1 − Y.2 = 0
and there are no processes at lines 9 or 10.3 before. This combined with
the fact that the processes at lines 10 and 10.4 don't execute imply Inv3.7
holds after the step. If no readers are at lines 10 or 10.4, then Y.1 6= Y.2 so
no reader will execute lines 9/10.3 and end up at 10/10.4, meaning Inv3.7
holds after the step.

Assume Inv1−6 holds when PCw = 3, and a writer takes a step to line 4. Then

Inv1−6 still holds: Inv4 holds: This step will only happen when Flag = true, so
Flag′ = true, X.1′ 6= W ′, Y.1′ = Y.2′ = w.a′, and ∀r((PC ′r ∈ {7.1 − 8} ⇒ r.c′ 6=
W ′) ∧ PC ′r 6∈ {9− 12.2}).
Inv1, ...Inv3, Inv5, Inv6 hold trivially since PC ′w = 4.

Assume Inv1−6 holds when PCw = 4, and a reader takes a step. Then Inv1−6
still holds: Inv4 still holds: There are no readers at lines 10, 10.4 by Inv4.4, so
Flag′ = true. No reader changes X.1, Y.1, or W , so X.1′ 6= W ′ and Y.1′ = w.a′.
No reader is at lines 9 or 10.3 so Y.2 doesn't change either, and thus Y.2′ = w.a′.
Since ∀r, PC ′r ∈ {7.1 − 8} ⇒ r.c 6= W , no readers will enter lines 9/11.1, so there
are still no readers on lines 9− 12.2. Since X.1 6=W , a reader that executes line 7
will have r.c′ 6=W ′ when at lines 7.1− 8.

12



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Inv1, Inv2, Inv3, Inv5, Inv6 hold trivially since PC ′w = 4.

Assume Inv1−6 holds when PCw = 4, and a writer takes a step. Then Inv1−6 still

holds: Line 4 just sets Flag = false, and Inv4 and Inv5 are identical except for
Flag being inverted.

Assume Inv1−6 holds when PCw = 5, and a reader takes a step. Then Inv1−6 still

holds: Identical argument to PCw = 4 and a reader taking a step, except Flag
stays at false this time.

Assume Inv1−6 holds when PCw = 5, and a writer takes a step. Then Inv1−6 still

holds: Inv6 holds: Only Y.1 has changed, so Flag
′ = false, X.1′ 6=W ′, and Y.2′ =

w.a′. We see ∀r, r.c hasn't changed since the writer executed a step, not a reader,
and W hasn't changed, so ∀r((PCr ∈ {7.1 − 8} ⇒ r.c 6= W ) ∧ PCr 6∈ {9 − 12.2})
holds. Since Y.1 = w.a, and Y.1 is decreased by w.a, Y.1′ = 0
Inv1, ..., Inv5 hold trivially

Assume Inv1−6 holds when PCw = 6, and a reader takes a step. Then Inv1−6
still holds: Inv6 still holds: By Inv6 no reader is on lines 10/10.4, so Flag doesn't
change and Flag′ = false. Since a reader takes a step X.1, W , and Y.1 don't
change either, so X.1′ 6= W ′, and Y.1′ = 0. Since X.1 6= W , any reader that takes
a step from line 7 will have r.c 6= W when at one of lines 7.1 − 8. By Inv6.5,
a reader r that executes line 8 won't end up at lines 9 or 11.1 since r.c 6= W ,
so PCr 6∈ {9 − 12.2}. Since no reader executes lines 9 or 10.3, and no writer is
executing, neither w.a or Y.2 change, so Y.2′ = w.a′.

Assume Inv1−6 holds when PCw = 6, and a writer takes a step. Then Inv1−6 still

holds: Only W has been changed to W . After the step is taken, Flag′ = false,
X.1′ =W ′ since W was �ipped, Y.1′ = 0, ∀r((PC ′r ∈ {7.1− 8} ⇒ r.c′ 6=W ′)) since
only W was �ipped, and since ∀r, PCr 6∈ {9− 12.2} by Inv6.5, {r | PC ′r = 10} = ∅
after the step.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.1 holds:

The only way either side of the equation could change is if a process takes a step
at 7, 9, or 10.3. If a process takes a step at 7, the left side increases by 1 and
X.2 increases by 1. If a process takes a step at 9, the left side decreases and Y.2
increases by 1. Likewise for 10.3. Thus InvG.1 still holds after the step.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.2 holds:

X.1, X.2, Y.1, Y.2 only increase except at line 5. At this line Inv5 says Y.1 = w.a,
and Y.1 is decreased by w.a, so Y.1 ≥ 0 after taking a step.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.3 holds:

The number of readers in 10.1 − 10.3, 11.3 − 11.7, 12.1, 12.2 can only increase if a
reader executes line 11.2 successfully. Since for any reader at line 11.2, r.a ≤ Y , the
reader will only successfully complete line 11.2 if there are no other readers in the
lines given in InvG.1. The lines in InvG.1 are a superset of the lines given here, so
no 2 readers will enter the lines given here.

13



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.4 holds:

Either a process starts outside 10.1, 10.2, 12.1, 12.2 and enters lines 10.1, 10.2, 12.1, 12.2,
it stays at 10.1, 10.2, 12.1, 12.2, or it starts at 10.1, 10.2, 12.1, 12.2 and leaves them.

A process can only enter these lines by executing line 11.6 and succeeding.
This can only happen if U = 1, so U 6= 2 and there are no processes at lines
10.1, 10.2, 12.1, 12.2 before the step. After the step, U = 2 and there is a process
at one of lines 10.1, 12.1.

A process can only stay inside 10.1, 10.2, 12.1, 12.2 by executing 10.1, 12.1. This
doesn't change U , so the invariant still holds.

A process can only leave 10.1, 10.2, 12.1, 12.2 by executing lines 10.2, 12.2. By
InvG.3, the process is the only one at lines 10.1, 10.2, 12.1, 12.2. Both lines 10.2, 12.2
set U = 0. Thus after the step, U 6= 2 and there are no processes at 10.1, 10.2, 12.1, 12.2.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.5 holds:

The only way this invariant could be violated is if a process steps into these lines.
A process can only step into 10.1 from 11.6. By InvG.5 and the fact that V isn't
change at line 11.6, V ′ = false. A process can only step into 11.6 from 11.5, which
sets V = false. A process can only step into 12.1 from 11.6, so by InvG.5 and the
fact that V isn't change at line 11.6, V ′ = false

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.6 holds:

For each reader r, either the reader will enter lines 11.5, 11.6, stay inside them, or
leave them. If a reader enters from line 11.4, the only way it can enter, r.c = X.2.
Since by InvG.9 Y.2 ≥ r.a, and r.b hasn't changed since line 11.2 (it's local!), then
Y.2 ≥ r.a = r.b − 1 = r.c − 1 = X.2 − 1, so X.2 − Y.2 ≤ 1. By InvG.1 this means
no other processes are at lines 7.1− 9, 10.1− 10.3, 11.1− 12.2. Thus the invariant
holds.

If reader r stays inside 11.5, 11.6 for a step, this means it executes line 11.5 or
another reader executes. If r executes 11.5, clearly InvG.6 isn't a�ected. Another
reader could only conceivably violate the invariant for r in only 2 ways: by changin
U to 1 or by stepping into lines 7.2 − 9, 10.1 − 10.3, 11.1 − 12.2. The only way U
could change to 1 is by executing line 11.3, and this can't happen since there can
be no reader here, because of InvG.3 and PCr ∈ {11.5, 11.6}. A reader can only
step into 7.2 − 9, 10.1 − 10.3, 11.1 − 12.2 by executing line 7.1, but as a result of
executing this line no matter what U 6= 1 after, so the invariant holds.

If a reader r leaves lines 11.5, 11.6, it can only do so by executing line 11.6. No
matter what, after executing line 11.6 U 6= 1, so the invariant holds.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.7 holds:

A reader r can only enter 10.1 or 12.1 by executing line 11.6 successfully, and for
this to happen U would have to be 1 at line 11.6. By InvG.6, this would imply
there are no other readers at lines 7.2−9, 10.1−10.3, 11.1−12.2, and the execution
of the step isn't going to change that.

If another reader executes while is at lines 10.1 or 12.1, it is only going to violate
the invariant by stepping from lines 7.2 or 7.3 to 8. By InvG.4 U = 2, so no reader
will step from 7.2 to 8. By InvG.5, V = false, so no reader is going to step from
7.3 to 8. Thus the invariant holds.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.8 holds:

By the inductive hypthesis for InvG.8, at least one of ∃r, PCr ∈ {10.1, 12.1}, V =
14



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

true, or U 6= 2 ∧ ∀q, PCq 6= 7.3 must be true. In the �rst case, the invariant would
only be violated by a process taking a step from 10.1 or 12.1. This would make V ′

true, maintaining the invariant.
In the second case, the invariant could only be violated if a process took a step

and set V = false. This could only happen at line 11.5. By InvG.3 this means
no other processes are at lines 10.1, 10.2, 12.1, 12.2, so by InvG.4 U 6= 2. Also, by
InvG.10 there are no processes at line 7.3. Thus U 6= 2 ∧ ∀q, PCq 6= 7.3.

In the last case, the invariant could only be violated if a process set U = 2 or a
process entered line 7.3. The former could only happen by a process successfully
executing line 11.6, which would result in a process at line 10.1 or 12.1. The latter
would indicate U = 2 before, which was not true.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.9 holds:

Y.2 is only increased, and r.a is only changed when it is set to Y.2 at line 11.1

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.10 holds:

Assume a process enters line 11.3 from 11.2. Then since Y.2 ≥ r.a and r.b−r.a = 1,
it follows that X.2− Y.2 = 1 and there are is no process at line 7.3 by InvG.1.

If a process is in 11.3−11.7 and takes a step, InvG.3 implies there are no processes
at lines 10.1, 10.2, 12.1, 12.2, so U 6= 2 and no process enters line 7.3.

Assume InvG and Inv1−6 hold and any process takes a step. Then InvG.11 holds:

The only place where U can be changed from 0 to 1 is at line 11.3. It will only be
changed from 0 to 1 if the CAS succeeds, and in such a case the process will be in
line 11.4, making the invariant true.

The only other way the invariant could be violated is by a process leaving 11.4−
11.6. A process can only do this by lines 11.6 and 11.7. A process leaving via 11.6
that succeeds will set U = 2, otherwise U 6= 1, and U won't be changed so after
the CAS U 6= 1. A process leaving via 11.7 will set U = 0, so U 6= 1.

8. Writer Downgrade

Writer downgrade was ignored in the above proofs since it would complicate
the already large invariant proof, and it can added in a rigorous manner. We will
show that a writer executing the downgrade procedure results in precisely the same
con�guration as a reader executing until line 8, the reader entering line 9 or 11.1
just after the writer executes line 12.2, and the writer/reader switching PID's. Thus
for the single-writer case, the writer becomes a reader in every way. From then on
upgrades and downgrades of this �reader� are performed as desired.

9. Multi-Writer

It is possible to obtain a multi-writer Multi-reader starvation-free reader-writer
exclusion algorithm from the single-writer version by simply adding a FCFS, Con-
stant RMR Mutex Lock on the incoming writers. When a writer enters, it acquires
a lock and records that it entered as a writer. When the writer exits, whether as
a reader, an upgraded reader, or as a writer, it releases the lock to allow other
writers to enter. Mutual Exclusion isn't violated since the Single-Writer algorithm
only encounters one writer at a time. Exit is still bounded since the only addition is
the release of the FCFS lock. Since the lock is FCFS, the doorway of the lock func-
tions as the writer's doorway to the algorithm, making the algorithm FCFS among

15



Starvation-Free Reader-Writer Exclusion with Upgrade/Downgrade

writers. The remainder of the properties clearly hold, since the inner single-writer
algorithm hasn't been changed, and the writer mutex is FCFS and starvation free.

10. Acknowledgments

This wouldn't have been possible without the guidance and help of my thesis
advisor, Prasad Jayanti, and the lively discussions with the other members of his
group: Vibhor Bhatt, Jack Bowman, Jonathan Choi, Michael Diamond, Zhiyu
Liu, and Nancy Zheng. I'm greatly appreciative of my thesis committee members,
Robert Drysdale and Sean Smith, for taking the time to review my thesis talk and
writ up.

References

[1] Vibhor Bhatt, and Prasad Jayanti. Constant RMR Solutions to Reader Writer Synchroniza-
tion. PODC '10, July 25-28, 2010, Zurich, Switzerland.

[2] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-Memory Mutual Exclusion:
Major Research Trends Since 1986. Distrib. Computing, 2003.

[3] Vassos Hadzilacos and Robert Danek. Local-Spin Group Mutual Exclusion Algorithms. Pro-
ceedings of the 18th International Symposium on Distributed Computing, pg 71�85.

[4] Prasad Jayanti and Srdjan Petrovic. E�cient and Practical Constructions of LL/SC Variables.
PODC 2003.

[5] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with �Readers� and �Writ-
ers�. Commun. ACM, 14(10):667�668, 1971.

[6] E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Commun. ACM,
8(9):569, 1965.

[7] Leslie Lamport. A New Solution of Dijkstra's Concurrent Programming Problem. Communi-
cations of the ACM, August 1974, Volume 7, Number 8.

16


	Reader-Writer Exclusion Supporting Upgrade and Downgrade with Starvation Freedom
	Recommended Citation

	tmp.1596484807.pdf.73ZQZ

