
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2011

Static Analysis for Ruby in the Presence of Gradual Typing Static Analysis for Ruby in the Presence of Gradual Typing

Michael Edgar
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Edgar, Michael, "Static Analysis for Ruby in the Presence of Gradual Typing" (2011). Dartmouth College
Undergraduate Theses. 72.
https://digitalcommons.dartmouth.edu/senior_theses/72

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/72?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

STATIC ANALYSIS FOR RUBY IN THE PRESENCE OF GRADUAL TYPING

MICHAEL JOSEPH EDGAR

Department of Computer Science

Dartmouth Computer Science Technical Report TR2011-686

William McKeeman, Ph.D.
Thesis Advisor

i

STATIC ANALYSIS FOR RUBY IN THE PRESENCE OF GRADUAL TYPING

by

MICHAEL JOSEPH EDGAR

THESIS

Presented to the Faculty

in Partial Fulfillment

of the Requirements

for the Degree of

BACHELOR OF SCIENCE

Department of Computer Science

DARTMOUTH COLLEGE

May 2011

Abstract

Dynamic languages provide new challenges to traditional static analysis techniques, leaving

most errors to be detected at runtime and making many properties of code difficult to

infer. Ruby code usually takes advantage of both dynamic typing and metaprogramming

to produce elegant yet difficult-to-analyze programs. Function evalpq and its variants,

which usually foil static analysis, are used frequently as a primitive runtime macro system.

The goal of this thesis is to answer the question:

What useful information about real-world Ruby programs can be determined

statically with a high degree of accuracy?

Two observations lead to a number of statically-discoverable errors and properties in

parseable Ruby programs. The first is that many interesting properties of a program can be

discovered through traditional static analysis techniques despite the presence of dynamic

typing. The second is that most metaprogramming occurs when the program files are

loaded and not during the execution of the “main program.”

Traditional techniques, such as flow analysis and Static Single Assignment transforma-

tions aid extraction of program invariants, including both explicitly programmed constants

and those implicitly defined by Ruby’s semantics. A meaningful, well-defined distinction

between load time and run time in Ruby is developed and addresses the second observation.

This distinction allows us to statically discern properties of a Ruby program despite many

idioms that require dynamic evaluation of code. Lastly, gradual typing through optional

annotations improves the quality of error discovery and other statically-inferred properties.

iii

Table of Contents

Page

Abstract . iii

Table of Contents . iv

Chapter

1 Introduction . 1

1.1 Static Analysis . 1

1.2 Dynamic Typing . 1

1.3 Ruby’s Dynamic Capabilities . 2

1.4 Syntax Aids Analysis Greatly . 3

1.5 Emulating Load-time Metaprogramming 4

1.6 Static Single Assignment . 5

1.7 Constant Propagation . 6

1.8 Ruby Blocks: A Prime Analysis Target . 8

1.8.1 Block Use Mechanics are Diverse 8

1.8.2 Determining the Presence of a Block 9

1.8.3 Invoking a Block . 9

1.8.4 Capturing a Reference to a Block 10

2 Prior Art . 11

2.1 Ripper . 11

2.2 Type Inference: Diamondback Ruby . 12

2.3 Type Inference: Cartesian Product Algorithm 13

2.4 Type Inference: Ecstatic . 14

2.5 YARD . 14

3 Construction and Low-Level Analysis of a Ruby CFG 16

3.1 Resolving Scopes . 16

iv

3.2 Building the Control Flow Graph (CFG) 17

3.2.1 CFG Intermediate Representation 17

3.2.2 Handling Blocks (Closures) . 18

3.2.3 Fake Edges . 18

3.3 Top-Level Simulation . 20

3.4 Static Single Assignment . 21

3.5 Type Inference: Cartesian Product Algorithm 23

3.6 Detecting Purity . 24

3.7 Constant Propagation . 25

3.7.1 Constant Propagation: Method Calls 26

3.7.2 Constant Propagation: Types and Branches 27

3.7.3 Constant Propagation: Lambda Definitions 27

3.7.4 Constant Propagation: Supporting Algebraic Identities 28

3.7.5 Constant Propagation: Binding Complications 30

4 High-Level Analyses . 31

4.1 Inferring Block Use Patterns . 31

4.1.1 Characterizing Block Use . 31

4.1.2 Complexity of Characterization . 32

4.1.3 Inferring Block Use: yield . 33

4.1.4 Inferring Block Use: Proc#call . 36

4.1.5 Inferring Block Arity . 37

4.1.6 Inferring Block Argument Types . 37

4.1.7 Discovering Errors . 38

4.2 Exit Behavior Analysis . 39

4.2.1 Characterizing Exception Behavior 39

4.2.2 Raise Analysis During Constant Propagation 40

4.3 Unreachable Code Analysis . 41

4.4 Unused Variable Analysis . 44

v

5 Warnings and Errors Discovered . 47

5.1 Load-time Errors . 47

5.1.1 Top-Level Nontermination or Stack Overflow 47

5.1.2 Double Module Inclusion . 48

5.1.3 Mismatched Superclasses . 48

5.1.4 Opening a Class as a Module (and vice-versa) 49

5.2 Run-time Errors . 49

5.2.1 Unnecessary Block Arguments . 49

5.2.2 Missing Block Argument . 50

5.2.3 Incorrect Arity . 50

5.2.4 Privacy Errors . 50

5.2.5 Missing Method Errors . 51

5.2.6 Improperly Overriding Core Methods 51

5.3 Warnings . 52

5.3.1 Catching Exception . 52

5.3.2 Dead Code . 52

5.3.3 Unused Variables . 53

6 Concluding Remarks . 54

6.1 Our Results . 54

6.2 Limitations . 54

6.3 Future Work . 54

List of Algorithms . 56

References . 56

Appendix

A Appendix A: Proofs of Related Theorems . 60

A.1 RequiredM is Undecidable . 60

A.2 OptionalM is Turing-unrecognizable . 61

vi

Chapter 1

Introduction

1.1 Static Analysis

When creating a program in a Turing-complete programming language, the programmer

often wishes to determine certain properties of the code as written. Depending on the

language in use, some properties are discovered with simple algorithms, such as the type

of a variable in C. Some properties, such as termination, are undecidable in the general

case [Tur37], yet even automated proof of termination has seen success with Microsoft’s

TERMINATOR project [CPR06, ACPR]. Errors in a program are the most common

property we wish to discover, though there exist additional properties that are tractable to

determine statically that provide meaningful information about a program. Java, during

compilation, determines precisely which exceptions a method may raise during its execution,

and ensures the programmer has annotated a certain subset of those exceptions (so-called

checked exceptions) in the method definition [JBGG96].

1.2 Dynamic Typing

Dynamically-typed languages introduce challenges to static analysis. In such languages,

the types of variables, such as the arguments to a procedure, may not be known until

runtime. The type of a variable can change within a loop or even based on user input.

While statically-typed languages provide constructs such as subtype polymorphism both

for code re-use and for dynamic binding, dynamically-typed languages have implicit para-

metric polymorphism: variables are assumed to have some correct type for the operations

1

performed on them, and in the general case, only attempting the operation at runtime

can determine the validity of that assumption. Type errors are thus difficult to discover

statically. Additionally, if function resolution is allowed to depend on the types of the

arguments (including the receiver with common object-oriented syntax), as is common in

such languages, the program flow also depends on the runtime types of the arguments.

1.3 Ruby’s Dynamic Capabilities

Ruby is dynamically typed, and it allows nearly all aspects of the running program to change

at runtime. (NB: I assume for the purposes of this paper that the reader is familiar with, or

can readily learn, common aspects of Ruby and its dynamic features.) For example, Ruby

provides constant identifiers as a language feature and disallows setting them in method

bodies. Implementations always generate a runtime warning upon rebinding the constant

identifier, while executing the rebinding. This warning can be avoided entirely: one can use

remove_const to delete the constant, and const_set to rebind it, all without generating

a warning.

As an object-oriented language in the Smalltalk tradition, every value in Ruby is an

object: an instance of a class. Classes can be created or removed at any time, as can instance

methods. When a method is called that an object cannot respond to, its method_missing

method is called; programmers use this callback to implement delegation patterns and to

generate methods at runtime. For example, the popular Ruby on Rails web framework can

generate database-searching methods on the fly when a method call is performed matching

the regular expression find_all_by_\w+.

Ruby’s object model includes a metaclass or eigenclass for every object. Every object

is an instance of its metaclass inheriting from the object’s traditional class. This hierarchy

allows the programmer to add or remove methods to individual objects at runtime.1

1Exception: small integer constants (less than 230), which are commonly represented internally as
tagged pointers, do not have mutable metaclasses.

2

All of these dynamic features challenge static analysis. Ruby programmers commonly

make use of these dynamic features, forcing any successful static analysis to be prepared

for their implications.

1.4 Syntax Aids Analysis Greatly

Some highly dynamic languages, such as the Lisp family of languages, have little syntax.

However, most Lisp dialects have numeric literals, strings, #t to represent truth, and so

on, and an analyzer can determine the types of those literals. Some dialects have special-

purpose macros such as defun for function definition; an analyzer might use knowledge of

these macros to assume that the name being bound will refer to a function unless rebound.

Beyond these examples, dataflow analysis must take over if an analysis intends to determine

types or other properties of a given binding.

Ruby, on the other hand, uses a complicated but structured syntax to simplify common

programming tasks. Many constructs overlap in functionality: there exist four conditional

syntaxes, two ways to create classes, and so on. Special syntax exists for defining methods,

creating classes and modules, passing a single anonymous procedure to a method, invoking

the specially passed procedure, interacting with an object’s metaclass, receiving a variable

number of arguments, and so on. It has literal syntax for strings (with and without arbitrary

code interpolation), regular expressions (also including interpolation), integers of arbitrary

precision, floating point values, arrays, hash tables, ranges, symbols, and procedures.

These syntactic forms allow an analyzer to determine wide-ranging information about

a program without any dataflow analysis. The information cannot always be relied on with

exact certainty, due to the dynamic features described previously (Listing 1.1). A compiler

would be required to account for such dynamism precisely. In designing an analyzer and

linter,2 however, I can choose to not fight this battle.
2 I use “linter” to mean a static analysis tool that warns against errors, questionable practices, and poor

style choices.

3

Listing 1.1: Dynamic class modifications
class A < Str ing
end
i f rand > 0 .5

Object . c l a s s_eva l { remove_const :A }
A = Class . new(In t eg e r)

end

1.5 Emulating Load-time Metaprogramming

As noted earlier, metaprogramming is used commonly in Ruby to reduce code duplica-

tion and to provide convenient interfaces to libraries. Methods are generated primarily

through Module#define_method and Kernel#{class_,module_,instance_,ε}eval. De-

tecting calls to these methods statically is necessary to have a full knowledge of which

methods exist on which types.

As an example, Module#attr{_reader,_writer,_accessor,ε}, which generate getters

and setters for instance variables, are simple methods generating new methods based on

their arguments. Since they are used to generate getters and setters for instance variables,

they are primarily called with a constant string or symbol as parameters. The attr family

of methods are pure in that they use only their arguments as input; when they are called

with constant arguments their effects can be predicted statically. They are also most often

called in class definitions, which are typically executed exactly once, when the containing

file is loaded into the interpreter. Indeed, the RDoc documentation tool accompanying

Ruby attempts to discover direct calls to these methods (and others) by inspecting each

identifier token that does not occur inside a method definition. It then uses this information

to create documentation for the reader and writer methods that will be generated.

This technique is insufficient once one ventures beyond these four methods. If one writes

new methods that generate methods, or re-implements the above methods with a different

name, the tool will fail to predict the side-effects, as it has hard-coded this analysis.

If a tool can perform static method resolution, and can emulate a predictable subset

4

of Ruby, it can emulate load-time method calls that it resolves precisely and that have

constant arguments. While emulating, it recursively analyzes strings passed to calls to

eval, and intercepts calls to define_method. This technique can discover properties of a

subset of dynamically-created methods statically. Intuition leads us to think this subset is

an important one, and the limited research into Ruby has supported this intuition [FAF09].

The size of this subset, relative to the set of all dynamically-created methods, should be

measured to determine the efficacy of top-level emulation.

1.6 Static Single Assignment

A significant issue in analysis is determining, given a use of a variable (temporary or

explicit) in a program, where that variable was defined. Given multiple assignments to the

same variable along disjoint paths, possibly including assignments inside loops, answering

this question efficiently is nontrivial.

One technique commonly used is transforming the control-flow graph (CFG) of the

program into Static Single Assignment Form (SSA). This form modifies the original CFG

to satisfy the following constraints [CFR�89]:

1. Each programmer-specified use of a variable is reached by exactly one assignment to
that variable.

2. The program contains φ-functions, that distinguish between values of variables trans-
mitted on distinct incoming control flow edges.

φ-functions are commonly called φ-nodes as well, a convention I will use. If a program

is written such that each variable is assigned to only once, each use of that variable can

be traced precisely to its definition. While a full discussion of implementing the SSA

transformation is not within the scope of this thesis, it is worth noting that it can be

implemented efficiently: the algorithm chosen for implementation here is linear for non-

pathological programs, regardless of language [Mor98].

5

1.7 Constant Propagation

Constant Propagation (CP) is the dataflow problem of determining which variables and

values are constant in a program. Common among optimizing compilers, constant propa-

gation allows a static analyzer to prune branches conditioned on proven constants, which

improves the accuracy and efficiency of all other analyses that consider the control flow of

a program. In general, CP is undecidable [Hec77], yet there exist sets of constants that

are decidable, as well as polynomial-time algorithms to find instances of those constants in

programs.

An important example illustrating the need for CP in static analysis of Ruby stems from

Ruby’s history of breaking backward compatibility: library authors often write separate

code based on the variable RUBY_VERSION to either resolve incompatible differences or to

backport new features (see Listing 1.2).

Listing 1.2: Conditionally Backporting a String Method
i f RUBY_VERSION < " 1 .9 "
class St r ing

def start_with ?(p r e f i x)
s e l f [0 . . . p r e f i x . s i z e] == p r e f i x

end
end

end

Ruby’s rich syntax for literals (including classes, modules, and procedures) mean the

primary structure of a Ruby program is actually a series of instructions involving constants.

Inferring the results of these instructions statically not only presents the opportunity for

optimization but also reveals the object-oriented structure of the program. A CFG-based

analysis with constant propagation can discover classes, modules, and methods declared

statically using literal syntaxes, and could potentially discover such constructs when cre-

ated dynamically, without literal syntaxes, but with constant arguments (see Listing 1.3:

discovering the start_with? method requires some form of constant propagation through

6

local variables).

Listing 1.3: Backporting start_with? using Dynamic Code w/ Constants
i f RUBY_VERSION < " 1 .9 "

k l a s s = St r ing
k l a s s . c l a s s_eva l do

new_method = : start_with ?
define_method new_method do | p r e f i x |

s e l f [0 . . . p r e f i x . s i z e] == p r e f i x
end

end
end

Constant Propagation is typically framed as assigning a value to each variable drawn

from the set C Y tJ,Ku, where C is the set of all constants, J is read as “undefined”, and

K is read as “varying.” All variables in a function are initially considered to be J, with

formal parameters to a function considered K (unless interprocedural analysis indicates the

parameter is always the same constant—we disregard this opportunity). CP terminates

when it has assigned every variable either a constant from C or K. CP algorithms differ by

which constants are proven and in their running times.

In particular, Wegman and Zadeck’s Conditional Sparse Simple (CSS) algorithm finds

all simple constants in a program, as well as constants that are constant when ignoring

untaken branches on constants [WZ91]. A simple constant is a value that can be proven

to be constant without assumptions about the path taken through the program, and by

only maintaining one value along each path. CSS combines the single-assignment portion of

SSA with earlier work in pruning branches based on constants. Intuitively, SSA simplifies

CP by ensuring that only one assignment occurs to each variable, though additional rules

are required for φ-nodes. Wegman and Zadeck’s algorithm runs in time linear with the

number of variables in the program [WZ91]. Due to the SSA transformation, the number

of variables in the CFG may be superlinear with respect to the size of the input program;

drastic increases in variable count during SSA transformation are uncommon outside of

7

pathological input code.

1.8 Ruby Blocks: A Prime Analysis Target

A method in a Ruby program may always receive a block as an argument. This block is

simply a closure, created by the caller, using one of two syntaxes. The callee may invoke

this closure directly by using the yield keyword or by capturing the block as an explicit

argument. It may also forward the closure on to another method. Widespread use of blocks

is a defining characteristic of idiomatic Ruby code.

Some methods require a block, such as the benchmarking method Benchmark.measure.

Calling this method without a block argument results in a LocalJumpError exception being

raised, which occurs when the yield keyword is executed without a block argument.

Some methods do not require a block, but will use a block if provided one. If a pro-

grammer uses File.open without a block, the requested file is opened and the file handle is

returned. If File.open is called with a block, then the file is opened, the block is run with

the open file handle as an argument, and then the file is closed. This technique, inherited

from Lisp (with-open-file), is a common idiom for handling resource management.

Naturally, some methods will never use a block. One may write Dir.pwd { |x| puts x },

but the block will not be run. More importantly, it will be silently ignored.

How a method uses block arguments is a defining part of its API, yet conformance is

at best enforced through runtime errors, and at worst ignored. Statically inferring this

portion of the API implies the potential for static enforcement.

1.8.1 Block Use Mechanics are Diverse

In order to implement an efficient block-use analysis, we must have a full understanding of

how a callee can determine whether a block argument is available, how it can attempt to

invoke a block, how such attempts can fail, and how it can obtain a reference to the block

object (if any).

8

1.8.2 Determining the Presence of a Block

Without obtaining a reference to the block, there are two ways to determine whether a

block argument is available in the current stack frame:

• The method Kernel#block_given? returns true if there is a block argument avail-
able, and false otherwise. This is the most common approach.

• The defined? operator takes an expression as an argument and returns true if the
expression is “defined”; defined?(yield) is considered “defined” if there is a block
argument. Thus defined?(yield) is equivalent to Kernel#block_given?. This is a
rarely used technique.

Neither of these methods can be implemented in pure Ruby. Thus, we need only iden-

tify invocations of the block_given? method. While defined? in general is not fully

supported by our present implementation, defined?(yield) is lowered during CFG con-

struction to equivalent branch and assignment instructions. Thus, we can detect whether

the programmer is using either technique purely through analysis local to the method in

question.

1.8.3 Invoking a Block

Without capturing the block as a Proc object, there is one way to invoke the block: the

yield keyword, which accepts an argument list (possibly varying). If executed when a

block is present, the block is invoked with the given arguments. When the block termi-

nates, execution continues after the yield. When executed when a block is not present,

a LocalJumpError exception is created and raised. This exception can be caught like any

other, and catching that exception introduces a technique to create methods that optionally

use their block.

yield is tied to the method body and frame in which it occurs: yield cannot invoke a

block argument passed to a different stack frame3. Thus, yield can be implemented more
3yield, combined with eval(), can be used to invoke a block from a different scope: as we discuss

later, Binding objects allow the programmer to violate this encapsulation. We propose a solution to the
resulting complications later.

9

efficiently and analyzed purely locally.

1.8.4 Capturing a Reference to a Block

The previous sections discuss invoking a block without a reference to it. A method may

obtain a reference to the block in two ways:

• Prefixing the final argument in the method’s formal argument list with an ampersand
(&). Upon method entry, the named argument will contain a reference to the block,
if any.

• Proc.new, when called with no normal arguments and no block argument, will return
a reference to the block, if any.

When a block is not present, both of these techniques will give nil, and when a block

is present, they give the block as an instance of the Proc class. The Proc class provides

several methods which invoke the closure, such as #call, #[], and #===.

When we later characterize block use, we will require a notion of “attempting to invoke

the block argument;” Keyword yield is one way. If a reference to the block is exposed in

such a way, this notion manifests as attempting to capture the block as a reference, not

checking if it is nil, and attempting to invoke it by one of the above methods. Doing so

results not in a LocalJumpError as above, but instead a NoMethodError.

Since the closure obtained through either technique is an object reference, it may be

passed to other procedures, and can escape the frame’s execution entirely if stored on the

heap. This presents a greater challenge for analyzing block use.

10

Chapter 2

Prior Art

Ruby has been the subject of research in both static and dynamic analysis in recent years,

primarily focused on type inference and discovering type errors. The prior work that we

build upon, both directly (through implementation) and intellectually, is listed below.

2.1 Ripper

Ripper is a SAX-style Ruby parser library provided with Ruby 1.9 which can also convert

Ruby code into a simple, array-based abstract syntax tree. The library is constructed by

embedding special instructions into the same bison grammar file used by the language

implementation. The resulting trees still retain some features of the concrete syntax tree,1

and only specific node types carry line and column information. It also has the flaw of

parsing local variable references and no-argument, no-receiver, no-parentheses method calls

to the same node type. Distinguishing the two after the fact is not difficult, but as local

variables are created by the parser, Ripper should make this distinction. Finally, it is still

considered “experimental” by its authors and is not bug free; three bugs were discovered in

which Ripper discarded parse trees for which it lacked parsing rules. They were patched

by the authors and applied to the main Ruby repository [Edg11b, Edg11a].

While competing AST formats and libraries exist, such as ruby_parser [Dav11], only

Ripper is officially supported. Additionally, ruby_parser is developed primarily by one

individual, and contrasted with Ripper, at times performs too much semantic interpretation
1For example, parsing “foo.bar” and “foo::bar”—which are equivalent—results in different parse trees,

which include the separator token as a node.

11

of the tree.2

The input to the analyzer is thus a sequence of ASTs conforming to the format output

by Ripper.

2.2 Type Inference: Diamondback Ruby

Diamondback Ruby is the most prominent research project attempting to bring the ben-

efits of static analysis to Ruby. Focused on static typing, Diamondback Ruby (DRuby)

combines type annotations, static analysis and dynamic analysis to type wide ranges of

Ruby code [FAFH09b]. DRuby is primarily driven by an OCaml parser and analyzer that

produces a unified AST in what the authors call Ruby Intermediate Language (RIL), a

high-level intermediate representation that reduces some of the implicit complexities of

Ruby code while enabling source-to-source transformations [FAFH09c]. It uses temporary

variables to aid dataflow analysis, but is primarily intended to reduce Ruby code to a sim-

plified, less flexible language with a mapping back to Ruby code. While Ruby offers four

different conditional syntaxes,3 RIL transforms all of these syntaxes to the traditional if

.. else ... end syntax.

DRuby also warns the user when a function is called with incorrect arity, or symbols fail

to resolve, but it primarily focuses on typing [FAFH09a]. It uses a custom constraint-based

type solver to implement its type system.

Static analysis of RIL failed to produce significant results on real-world code, so the

DRuby authors augmented it to allow for dynamic profiling and added more “refactorings”

from untypable code to typable code [FAFH09b]. Profile-guided dynamic analysis saw

greater success and led to the creation of DRails [ACF09], which extends DRuby to analyze

web applications written using the Ruby on Rails web framework. Ruby on Rails is known
2 For example, upon parsing the rescue A => err_name construct, ruby_parser discards err_name as

part of the syntax tree and instead inserts a node in the rescue body representing err_name = $!. For a
static analyzer, having the parser perform this level of semantic interpretation is unacceptable.

3if and unless, with guard versions of both.

12

for taking full advantage of highly dynamic and unpredictable Ruby features; successful

analysis of such programs represents significant success in Ruby analysis.

Unfortunately, mainstream developers have not adopted DRuby. In part, the use of

OCaml instead of Ruby as the implementation language, despite its performance benefits,

limits DRuby’s ability to integrate into the Ruby ecosystem. Its focus on typing and its

annotation syntax may also contribute to its failure to break through: Ruby is often used

for rapid development and prototyping, and a lack of static typing is often considered a

strength in this regard.

2.3 Type Inference: Cartesian Product Algorithm

A primary difficulty of type inference in dynamically-typed languages stems from the im-

plicit parametric polymorphism of all code: a method called with arguments of different

types may result in new types and new polymorphic calls in the method body. In the pres-

ence of nested scopes, common in many dynamically-typed languages, the quantity of type

information to infer can grow exponentially with respect to the size of the input program,

though not all code will exhibit such complex polymorphic behavior.

The Cartesian Product Algorithm (CPA) developed by Ole Agesen [(year?)] is an

adaptive, single-pass algorithm which tracks type propagation throughout a dynamically-

typed program. It was originally written for the Self and Smalltalk programming languages,

which share many of Ruby’s dynamic capabilities. The algorithm creates a copy of each

method body for each possible combination of types for its arguments, and simulates the

flow of typed data in the method with the given combinations. As the set of argument

types grows, the method is re-simulated with new possible type combinations. This has the

effect of precisely inferring parametric polymorphism in a single pass through the program.

CPA has also been implemented for the Python language in Dufour’s Shed Skin opti-

mizing Python-to-C++ compiler [Duf], where it is combined with Pleyvak’s algorithm for

inferring data polymorphism [PC94]. Python shares many of Ruby’s dynamic capabilities,

13

though Python programmers rarely rely on evalpq or dynamic method definition, unlike

common Ruby practice.

2.4 Type Inference: Ecstatic

Ecstatic is the title of Kristian Kristensen’s master’s thesis from 2007 which applies type

inference to vanilla Ruby code [Kri07]. Ecstatic implements the CPA algorithm described

earlier while simulating a small set of Ruby constructs. It effectively inferred parametric

polymorphism in real-world benchmark scripts and Ruby libraries.

However, it was limited in its support. Recursion was unsupported, and only the most

straightforward syntax for using a block was supported. While valuable as a proof-of-

concept and excellent evidence that Ruby programs can be type-inferred by CPA, Kris-

tensen acknowledges several specific areas where accuracy was limited.

Notably, like the RIL used by DRuby, Ecstatic uses the AST of the Ruby program, and

not a lowered representation.

2.5 YARD

YARD is a documentation tool for Ruby that is designed to be modular, handle metapro-

gramming, and allow arbitrary, searchable documentation tags attached to methods, pa-

rameters, classes, and so on. In this respect it is successful: it correctly analyzes all the

cases that RDoc, the standard documentation tool, can analyze, and several more. When

run using Ruby 1.9, it uses the actual parse tree from Ripper (see 2.1) instead of relying

on a mere token stream as RDoc does. It does go beyond RDoc’s abilities: for example,

the developer provides a plugin that analyzes and documents test cases. This author has

also written a patch that supports the detection of classes created with Struct.new.

However, in discovering properties of the program in question (primarily classes and

methods), YARD too suffers from the fact that each new dynamic feature must be explicitly

14

supported through additional analysis code. If one defines a custom attr_accessor, one

must write a YARD plugin that supports the new definition.

15

Chapter 3

Construction and Low-Level Analysis of

a Ruby CFG

The following chapter details the construction and analysis of a low-level control flow graph

for Ruby code. The early sections of this chapter overlap with prior work (see [FAFH09c]),

yet is provided for completeness.

3.1 Resolving Scopes

Before any specific analysis is performed, the static scopes of the Ruby program are com-

puted, with as many bindings created and resolved as possible. Ruby has both open and

closed scopes for local variables (open scopes can reference variables in enclosing scopes;

closed scopes cannot). These bindings can be resolved statically. Local variable bindings

are created by Ruby “upon use”, which can interact oddly with various language constructs.1

Constants use open scopes yet can be referenced directly from outside the scope in which

they were declared. Class variables, a seldom-used, often-confusing feature of Ruby distinct

from static variables, use lexical scope for resolution, and so too are statically resolvable.

Instance variables rely on the dynamic value of self to resolve and thus cannot necessarily

be resolved statically. Global variables are trivially resolved.
1Example: variables defined by a rescue handler definition (rescue Exception => err) are available

in the ensure block and after the handler has executed.

16

3.2 Building the Control Flow Graph (CFG)

Next, we construct a full control-flow graph of Ruby code, in a lowered representation.

Several cues were taken from Morgan’s Building an optimizing compiler [Mor98]. Since

the Ripper (2.1) AST defines roughly 80 different node types, the walking procedures are

quite large, though nearly all node types are simply translated into a low-level intermediate

representation (IR) using traditional means.

3.2.1 CFG Intermediate Representation

Each instruction generated receives a reference to the AST node currently being processed;

this is done to simplify the process of relating information about instructions to the source

code that generated it. In order to simplify analysis of the IR, we use as few instruction

types as possible. The instruction types used are:

1. Local Assignment

2. Method Call: fixed or variable arity

3. Invoke Super: fixed or variable arity

4. Return

5. Raise

6. Jump

7. Branch

Typical Ruby implementations compile Ruby source to a bytecode with far more op-

codes than we use. For example, the YARV 1.9 bytecode compiler uses fresh opcodes for

class definitions, basic operators, and common operations on core library classes.

We implement some operations as method calls on a hidden, implementation-level class

(much like Ruby 1.9’s FrozenVM object), but many operations, such as class definitions, are

lowered entirely to sequences of assignments, branches, and calls to public methods. This

has the effect of explicitly encoding the implicit semantics of Ruby code in a low-level form.

17

The downside is that operations with complex semantics require much IR code: for example,

declaring an empty class at the top level requires 8 basic blocks and 30 instructions.

3.2.2 Handling Blocks (Closures)

Ruby’s blocks raise an interesting question in the design of the CFG. Ruby’s blocks are

quite frequently immediately executed by the callee using the yield keyword, any number

of times. Blocks may also be captured and stored for later execution by specifying the

block as an explicit argument in the callee’s definition. It is then converted to an object of

class Proc and may be invoked at any time, again any number of times.

Thus there are edges from a block-bearing method call to the block used, with the block

exiting via the same raise and return instructions that exit a method. There are edges

at the end of the block’s CFG indicating the return to the callee as well as to re-invoke the

block. (See Figure 3.1)

This construction is sufficient for inline blocks, but does not address the potential edges

from other blocks captured as values. Method calls that may invoke a closure not passed as

an inline block must also have edges entering and returning from the closure’s CFG. We do

not implement this, but recommend using a simple alias analysis to first create conservative

edges into local closure graphs, and then allow later analysis to remove extraneous edges.

This is likely to create a very dense graph at first, analogous to the CFGs produced by

computed goto constructs in C/Fortran.

3.2.3 Fake Edges

Many of the standard algorithms that work on Control Flow Graphs expect that the desig-

nated Enter block dominate each block and that the Exit block post-dominate each block.

In order to maintain this invariant, “fake” edges are inserted under specific conditions. Fake

edges, described by Morgan, are placeholder edges that only exist to preserve the graph

structure. In the context of optimization, when an instruction is placed on a fake edge, the

18

Figure 3.1: A call with a block that prints its argument

instruction is simply ignored.

When an unconditional jump such as return, next, break, and so on are generated, a

new basic block begins that has no predecessors: it is unreachable. A fake edge is inserted

from the loop header block to this unreachable block.

When redo is executed in a loop context, it restarts the loop body while ignoring any

loop header that may be present. This can create an infinite loop in the CFG during

construction - before removing any edges. While this is almost surely an error on the

programmer’s part, we must add a fake edge or we cannot analyze the code properly using

standard algorithms. We conservatively add a fake edge for all redo statements.

19

3.3 Top-Level Simulation

Any attempt to analyze a Ruby program requires discovering the classes, modules, and

methods defined in the program. The Ecstatic project walks the AST with inference rules

for certain node types, such as class, module, def, and so on [Kri07]. DRuby’s static

analyses use a similar approach [FAFH09b]. As these projects readily acknowledge, there

is a limit to the success of this approach: metaprogramming (the Ecstatic paper calls it

“dynamic programming”) is employed commonly in Ruby, wherein methods are created to

define methods, classes, include modules, and so on. Hard-coding rules for certain methods

is not enough.

As all top-level code is executed to achieve its effect, including class definitions and

method definitions, our approach is to simulate all top-level code that has a predictable

effect. This includes global mutations, such as the setting and getting of global variables, the

creation of classes (which creates new globally-accessible identifiers), defining new methods,

and so on. In order to capture these effects (especially the creation of classes, modules,

and methods) we intercept all calls to certain core Ruby methods, such as Class.new

and define_method. We then implement these methods within a sandbox and return

compatible results. Once we reach code which is unpredictable - a method call involving

I/O, for example - we cease simulation and begin further analysis.

In effect, we have implemented a interpreter for a deterministic subset of Ruby. The

need for this is clear: previous efforts (Ecstatic, RDoc, YARD) all work by simulating a

much smaller subset of Ruby, and they fail to discover methods and classes when user code

goes beyond that subset.

Performing full simulation introduces new challenges:

1. Top-level code may not terminate. While this is likely a major error on the user’s part,
it must not cause the analyzer to fail to terminate. As a safety measure, our analyzer
terminates simulation after a threshold number of basic blocks have executed.

2. The analyzer requires a knowledge of “unpredictable” methods, such as gets or rand.
We blacklist unpredictable methods that are written in C, and assume unpredictable
Ruby code will use these methods. The correctness of this approach is unproven.

20

Despite these challenges, top-level simulation successfully identifies metaprogramming

constructs that previously required manual intervention. As an example, the attr family

of methods are supplied to the analyzer as user code, without special casing its behavior.

3.4 Static Single Assignment

Creating the Static Single Assignment form of a Control-Flow graph is a well-known, sim-

ple algorithm. However, it may require adaptation to the language in question, especially

regarding the semantics of uninitialized variables. Ruby creates local variables when the

parser first sees an assignment to them, and they are available to be read any point lexi-

cally after that assignment. However, that assignment could be conditional, and thus, not

executed, leaving the variable in an uninitialized state. This has a well-defined meaning in

Ruby: when read, an uninitialized variable will have the value nil. In the example listing

3.1, the program will either print “5”, if the branch is successful, or “0” (as nil.to_i = 0).

Listing 3.1: A potential use of an uninitialized variable
i f rand > 0 .5

y = 5
end
puts y . to_i

On the path in the CFG where that variable is not written, its first use may occur be-

fore any assignments to the variable. This will confuse the straightforward SSA renaming

algorithm, which expects to have created a path-local name for the variable before encoun-

tering a read from that variable. The stack of names will be empty along the uninitialized

path.

When this occurs, we must insert an assignment to nil immediately before the variable

is used (see Figure 3.4). This restores the property that all variables are written before

they are read, explicitly encodes Ruby’s semantics in the CFG, and allows SSA renaming

to continue. If the use is a normal instruction, we insert the assignment in the same

21

i f x > 10
y = 2

else
a = y

end

Figure 3.2:

Relevant source code
Figure 3.3: Before correction Figure 3.4: After correction

basic block, immediately preceding the use instruction. If the use is a φ-node, then it is

“executed” immediately upon entering the block, so any new assignment must occur in a

preceding block. We insert the assignment instruction on the preceding edge corresponding

to the uninitialized argument to the φ-node (see Figure 3.7).

i f x > 10
y = 2

end
p y

Figure 3.5:

Relevant source code
Figure 3.6: Before correction Figure 3.7: After correction

22

3.5 Type Inference: Cartesian Product Algorithm

The Cartesian Product Algorithm (CPA) is a single-pass algorithm for inferring the po-

tential concrete types in a dynamically-typed program. CPA can be readily described as:

([Age95])

1. Instantiate type variables for all expressions

2. Initialize type variables for expressions with known pre-execution types (eg. string
literals)

3. Identify constraints between type variables

4. Propagate known concrete types through these constraints

The Ecstatic project implements this at the AST level for a large subset of Ruby [Kri07].

They also discuss the issues with flow-sensitive versus flow-insensitive analyses, and imple-

ment a flow-insensitive analysis.

By reducing the AST to a SSA-form CFG with a minimal instruction set, much of the

work of defining our CPA analysis is already complete. We implement the steps of (3.5) as

follows:

1. Instantiate type variables: The CFG’s temporary objects bear a publicly-manipulatable
instance variable inferred_type, which defaults to H.

2. Initialize type variables: Constants appear in our CFG as raw Ruby objects (such
as nil or small integers). Their type is determined by simply calling .class.

3. Identify constraints: Only four instructions create type constraints: assignment,
method-call, super-call, and φ. All four have the same constraint: their target tem-
porary’s type depends on their operands’ types.

4. Propagate types: Assignment instructions copy type from source to target, and
φ-nodes assign the union type of their operands to the target temporary. Method-
call and super-call instructions use the traditional CPA type calculation technique.
When the type of a temporary changes, it changes at its definition instruction; all
instructions using that temporary are then reconsidered.

23

The type propagation step, when applied to an SSA CFG, is nearly identical to the CSS

constant propagation algorithm. Indeed, our implementation runs CPA simultaneously

with CSS. Where CPA differs substantially from the CSS algorithm is in its complexity.

CSS guarantees OpV q runtime by only visiting each temporary’s definition at most twice,

changing a temporary t’s inferred value from J to a constant Ct, then from Ct to K.

However, CPA may require changing t’s type OpT q times, where T is the total number of

types in the program.

Unlike Ecstatic, we achieve a flow-sensitive analysis by using an SSA CFG. The SSA

renaming algorithm distinguishes between type variables on distinct paths, and φ-nodes

join those types as necessary.

3.6 Detecting Purity

We will soon confront the issue of determining whether we may simulate a resolved method.

We must only simulate pure methods. In an imperative language like Ruby, a pure method

is one which:

1. uses only its actual arguments (including the receiver) to compute its result

2. does not overwrite memory that was initialized before the method began.

For the first condition, we provide an exception for external constants, named using

Ruby’s syntax for constants, which we have shown to only be assigned once. This is

necessary to access common classes such as String and Array. A full purity analysis is

nontrivial, especially given lack of static type information. We employ a simple metric. We

conservatively denote a method impure if it:

1. explicitly writes to a non-local variable

2. explicitly reads a non-constant binding from outside the local scope

3. potentially calls an impure method via dynamic dispatch

24

One exception is made for #initialize, which is called during allocation of new objects:

it may write instance variables, but may not read nonlocal variables.

Some methods are implemented in C, not in Ruby. This is especially important in the

Ruby core library, where crucial classes such as Hash and Fixnum are implemented in C to

improve performance. For these, we provide a comment-based annotation, which informs

the analyzer that the method is pure. The annotation is not granular by overload, as no

instance of a method was found whose purity changed based on arity or argument types.

3.7 Constant Propagation

Wagmen and Zadeck’s CSS algorithm is attractive as it not only finds simple constants, but

also prunes untaken branches. The algorithm makes no assumptions about the source lan-

guage or the instructions present in the CFG; CSS simply distinguishes between operations

“predictable” at compile-time versus “unpredictable” operations. Typical presentations of

the algorithm are based on statically-typed languages such as C or FORTRAN, where the

CFG contains distinct instructions for basic mathematic operations (�, �,) and func-

tion calls. Special rules may be provided taking advantage of algebraic identities and these

basic operations.

However, in Ruby, unary and binary operators are implemented as methods with full

dynamic dispatch. In our CFG, there are extremely few fundamental instruction types. It

becomes clear that the effectiveness of CSS for Ruby depends closely on what operations

we can conservatively “predict”. If we disregard method calls entirely as unpredictable, our

implementation of CSS will not even prove that upon seeing x1 � callp3,�, 4q, x1 equals

7! As a result, if our CP algorithm will prove useful, we must make an effort to distinguish

between methods we may safely predict, and those we cannot.

25

3.7.1 Constant Propagation: Method Calls

We consider a method call’s components: the method name, the receiver object, and the

arguments provided. If any argument or the receiver of the method call is K, then in

general we cannot predict the result of the operation (algebraic identities violate this; we

consider them shortly). Thus, any method call we might predict has a constant receiver.

If the receiver is constant, then we know its concrete type, as is true for the arguments

to the method call. Given the receiver’s type and the method name provided, we consult

the LaserClass corresponding to the receiver’s type, and look up the method by name.

Given successful resolution, we then consider the method call’s arity and the concrete types

of the arguments, and ensure the arguments comply with arity and any annotated type

requirements.

Finally, we must decide whether we should attempt to simulate the resolved method.

Two concerns arise: the method must be pure, and it may not halt 2. We have already

described our conservative purity analysis (see 3.6), but we note that if any constant argu-

ment is an impure procedure itself, then the method call itself will be impure if the impure

procedure argument is called. We tentatively assume conservatively, without further anal-

ysis, that such a call is always impure and its result is K. Next, we turn to the issue of

termination.

If the method in question has been implemented in C, and its purity inferred by anno-

tation, then it is assumed to terminate. In this case, we simply call the method directly

with the receiver and arguments; this is a trivial operation as the analyzer is written in

Ruby itself.

If the method in question is implemented in Ruby, and we know it to be pure, we may

simply instantiate the actual parameters and walk the CFG of the method for a capped

number of steps, X. If the simulation executes a return instruction then the return value

is constant. If the simulation executes a raise instruction then the method call always

exits abnormally. If we execute X instructions without reaching the Exit node, we consider
2The method may also have guaranteed termination, but simply run longer than we wish during analysis.

26

the call unpredictable.

No matter how simulation is performed, if the direct call terminates normally, the return

value is assigned to the target register of the call instruction in the caller CFG, and if the

call has a CFG edge corresponding to an exception, that edge is removed. If it terminates

abnormally, then the method call will always raise; we remove the edge from the CFG

corresponding to the call’s successful execution and assign J to the target register of the

call.

3.7.2 Constant Propagation: Types and Branches

In Ruby, only nil and false are considered false in a boolean context. These two objects

each have their own corresponding metaclasses, NilClass and FalseClass, respectively.

Thus, by inferring types along with constants, we can prune branches predicated on t � K

if we know t’s type to not include (or to only include) those classes. The normal CSS

algorithm requires branches be predicated on a constant to prune their edges, as it is the

value and not the type that traditionally controls branching.

3.7.3 Constant Propagation: Lambda Definitions

A crucial feature of common Ruby code is pervasive use of anonymous functions. As the

CFG is built, when an anonymous function is discovered, its body’s CFG is built, and

an instance of LaserProc is created and assigned to a new temporary. That LaserProc

instance is a small wrapper around:

1. references to the Enter and Exit blocks of the function’s CFG

2. a description of the function’s formal arguments

3. a reference to the register holding the lexical value of self

Since anonymous procedures are only introduced as a block argument to a method call,

the method call then adds an edge from its basic block to the Enter block of the function’s

CFG (as described in 3.2.2).

27

When is a function itself constant? By itself, a function is an immutable value. However,

bear in mind that in Ruby, anonymous functions are closures : a combination of a function,

and its environment. The function may read and write variables from the environment that

are not defined in the function body. A closure may or may not be constant due to this

interaction.

Consider an anonymous function that reads a variable from its enclosing scope, and uses

it in the computation of its result. If that variable’s value is always a constant, then the

function could be rewritten without referring to that variable, by substituting all references

with the constant value. If that variable’s value is K, then such a substitution is impossible,

and the function both varies and is impure.

If an anonymous function merely writes variables in the environment, then it is a con-

stant value. However, this may affect constant propagation. Edges exist into the body of

the anonymous function anywhere it may be activated, so these writes are handled by CSS

as simply a control-flow issue.

3.7.4 Constant Propagation: Supporting Algebraic Identities

Thus far, we have considered only instructions with constant operands to potentially result

in a constant result. However, there exist operations between constants and K that also

result in a constant.

The simplest case, in a statically-typed language, is that 0 � K � 0. Similar identities

exist for exponentiation: 1K � 1 and K0 � 1. Such identities naturally hold true in Ruby

as well, yet we cannot implement them directly due to dynamic typing. Consider Listing

3.2, which could set xÐ 5� 0 � 0 or sets xÐ “Hello2 � 0 � “2.

Not only would assuming x � 0 be an incorrect inference, if the operands to the mul-

tiplication were reversed, such an approach would be ignoring a type error and exception.

However, such an approach does work if we are guaranteed to only have arguments of type

Numeric. Thus, due to dynamic dispatch, if we wish to infer constants using such identities,

we must:

28

Listing 3.2: Dynamic typing defeating traditional algebraic identities
i f rand > 0 .5

y = 5
else

y = ’ He l lo ’
end
x = y ∗ 0

1. Use the call’s constant arguments and method name to identify an identity

2. Ensure the potential concrete types of the varying arguments all match the required
types of the identities

While listing 3.2 demonstrates a program for which identities cannot be applied, listing

3.3 shows one we may approach, even though y � K and the types of its possible values

differ. The variable y is always Numeric, which means we may apply the K � 0 � 0

identity. The only difference between this example and the previous is the type of y.

tFixnum, Stringu � Numeric in (3.2), yet tFixnum, Complexu � Numeric in (3.3).

Listing 3.3: Dynamic typing compatible with traditional algebraic identities
i f rand > 0 .5

y = 5
else

y = Complex (2 , 4 . 5)
end
x = y ∗ 0

Since CPA runs during constant propagation, the potential type sets for each temporary

grow incrementally at each step. At first, in the negative example (3.2), CPA will infer

that y has type tFixnumu, and thus CSS may apply the Numeric � 0 � 0 identity to infer

that x Ð 0. However, CPA must eventually determine that y has type tFixnum, Stringu,

triggering a re-evaluation of y � 0 by CSS. CSS will fail to match an identity and assign K

to x.

29

In the positive example, y’s type will never exceed tFixnum, Complexu, which is a sub-

type of Numeric. Thus the identity Numeric� 0 � 0 will hold throughout constant propa-

gation.

3.7.5 Constant Propagation: Binding Complications

Until this point we have concerned ourselves with traditional interactions between variables

and procedures, and for these cases, CSS is correct as long as our “predictability” estimates

are correct. However, there exist dynamic features of Ruby that affect this propagation

technique.

Function eval() is the simplest complicator, and when it is called with a varying value,

we must assume all variables defined in blocks dominated by eval() are varying, as eval()

could redefine them unpredictably. When called with a constant value, we could attempt

to compile the code and analyze it; our implementation does not implement this in method

bodies.

Additionally, at any point in a Ruby program, one may obtain a Binding object which

encapsulates the context of execution at that point. This includes the values of local

variables, the value of self, and any block argument in scope. The Binding class provides

one method: eval(), which takes a string to be executed given the Binding object’s context.

Thus, using a Binding object, one can set local variables in a caller’s call frame. This, like

direct use of eval(), complicates constant propagation.

In the body of a given method, there are two ways to expose the binding of a caller

to a callee: calling the method Kernel#binding and providing a pointer to that binding

somehow, or passing to another method a reference to an anonymous function created in

the caller’s context. The Proc#binding method could then be used similarly.

Both of these behaviors are disastrous for analysis, yet they are exceedingly rare. Ad-

ditionally, none of these methods can be implemented in pure Ruby. Our tool could poten-

tially prove the absence of a call to binding in some cases; we do not implement a solution

to this issue.

30

Chapter 4

High-Level Analyses

4.1 Inferring Block Use Patterns

As illustrated in (1.8), block use patterns are a prime target for analysis: methods that

use their block argument typically fit simple patterns, but no tools exist to infer these

patterns, and some errors are silently ignored by Ruby. As blocks can be activated through

two mechanisms, we consider them separately. Note: since the algorithms described work

on the CFG composed of basic blocks, I will refer to basic blocks as “nodes” to reduce

confusion between Ruby’s blocks.

4.1.1 Characterizing Block Use

We begin by formally defining the property we wish to estimate. We have discussed several

intuitive types of methods: those requiring blocks, those which optionally allow blocks, and

those which ignore their blocks.

A method requiring a block is simple to define:

Definition 1. A method M P Block-Required � Methods if M may terminate via
an exception raised by attempting to invoke the block argument when none is provided.

Note the word “may”: a Block-Required method need not always raise when called

without a block, but it might. These methods, to be used safely, must be called with a

block.

Again from the set of all methods, we define Block-Optional as follows:

Definition 2. A method M P Block-Optional � Methods if M never terminates via
an exception raised by attempting to invoke the block argument when none is provided.

31

This leads nicely to the definition of Block-Ignored:

Definition 3. A methodM P Block-Ignored � Block-Optional ifM P Block-Optional
and M never invokes its block argument when a block is provided.

The symmetry in these definitions leads to a final, unlikely method type, Block-Foolish:

Definition 4. A methodM P Block-Foolish � Block-Required ifM P Block-Required
and M never invokes its block argument when a block is provided.

We consider a method M shown to be in Block-Foolish to merit a warning from the

analyzer, as such a method is likely the result of an error.

The following table summarizes the four types of methods as we have described them:
Block Provided

May Yield Never Yields

No Block
May Yield Block-Required Block-Foolish

Never Yields Block-Optional Block-Ignored

4.1.2 Complexity of Characterization

Determining if a method M P Block-Required is, intuitively, a question of whether

the program ever enters a certain state. Such questions are, in the general case, Turing-

recognizable but undecidable. We can construct a program that can confirm that a method

is Block-Required, but if the method is not, then our program may never terminate. A

proof that the language RequiredM is undecidable is included in Appendix A.1.

Determining if a method M P Block-Optional is thus a question of whether the

program never enters a certain state. Such questions are, in the general case, Turing-

unrecognizable: we cannot even construct a program definitively confirming that M P

Block-Optional. A proof that the language OptionalM is Turing-unrecognizable is

also included in Appendix A.2.

This should not surprise us: most interesting questions about the properties of programs

are, in the general case, undecidable or unrecognizable. We choose to concern ourselves

with subsets of Block-Required and Block-Optional that we can identify rigorously.

32

4.1.3 Inferring Block Use: yield

The simplest mechanism to call a block argument is to use the yield keyword. When yield

is encountered during CFG construction, its semantics may be directly implemented: the

arguments are computed, and then a branch is taken on the method’s block register, which

is initialized in the method prologue. If the block register is nil, a branch is taken which

creates an exception and raises it, following an abnormal CFG edge to the nearest exception

handling target. If the block register is a Proc object, its call method is invoked with the

arguments calculated earlier. An optimized CFG of a method foo which simply yields its

first argument x is given (4.1) to illustrate this structure. (Note: after this point, the actual

graphs become too large to provide verbatim; simplified versions will be substituted)

We hope to find a structural property of the graph that characterizes the block use

of the modeled method. In this naïve formulation of the CFG, we see that the “Failure”

node, which postdominates all method failures, has an edge coming directly from a node

implementing yield-failure. During CFG construction, we might choose to add extra flags

to these edges, and use their presence to characterize the potential for calling yield without

a block. An early implementation did just this, but it is foiled by the ability to catch

the LocalJumpError raised by yield failure. Not only does catching LocalJumpError re-

move the characteristic structure identifying yield failure, it will interfere with constant

propagation at the rescue handler (Figure 4.2).

Instead, we create a separate exception-handling path for yield failure (Figure 4.2).

This separate path duplicates the catch-checking logic, but is guaranteed to only consider

exceptions of class LocalJumpError. This will make the yield-failure exception path highly

amenable to the CSS Constant Propagation algorithm we have already implemented.

Given this CFG structure, and no capturing of the block to a variable, we can charac-

terize many methods’ block use based on answering two questions, each of which can be

answered efficiently:

• If we assume the method has no block, and block_given? returns false, does CSS
eliminate the edge in the CFG between the yield-failure exception path and the

33

Figure 4.1: A simple Block-Required method’s CFG

method exit?

• If we assume the method has a block, and block_given? returns true, are there any
instructions in the CFG of the form callpt#current_block, “call2, ...q?

The first question offers an opportunity to prove that yield is not called when no block

is provided: if CSS can optimize away the entire yield failure path, we can be sure that the

yield is guarded by the use of simple constants and block_given?.

The second question offers an opportunity to prove that yield is not called when the

block is provided. The simplest case is if yield simply never appears in the body of the

method, but there may also be a yield guarded by simple constants. Additionally, if the

34

Figure 4.2: Naïve CFG construction masks yield failure behind exception handlers

method is P Block-Foolish, the second question may be in the negative despite the

presence of a call to yield. We can encapsulate these two questions into two algorithms,

YieldsWhenAbsent (line 1) and YieldsWhenPresent (line 6). We will use these

algorithms later to characterize the method wholly.

Algorithm 1 Inferring Yield Use
function YieldsWhenAbsent(G)

CSS(G, Kernel#block_given: false, block: false)
G1 Ð TrimDeadEdgesAndBlockspGq
return YieldFailPostDominator P G1

end function

function YieldsWhenPresent(G)
CSS(G, Kernel#block_given: true, block: β)
G1 Ð TrimDeadEdgesAndBlockspGq
for all instruction P G1 do

if instruction calls t#current_block.call then
return true

end if
end for
return false

end function

35

4.1.4 Inferring Block Use: Proc#call

The second form of invoking a block is to capture it and call it. A simple example is

illustrated in (Listing 4.1), implementing map by naming the block argument in the list of

formal arguments.

Listing 4.1: A simple invoking a block using Proc#call
def map(l i s t , &blk)

r e s u l t = []
l i s t . each do | e lement |

r e s u l t . push (blk . c a l l (element))
end
r e s u l t

end

Proc.new() with no block argument returns the active frame’s block argument, as well.

Without this functionality, a block could only be invoked by the callee, a significant

limitation. However, it introduces new challenges for analysis. By introducing the block as

the variable blk, any object with a reference to blk may invoke the block argument, and

it may even be invoked after the callee terminates. The Kernel#lambda method in fact

simply returns its block argument to its caller, permitting the caller to call the block.

Thus, when a procedure acquires a reference to its block parameter, our analysis revolves

around potential aliases to that parameter. Any method call that has the block as a

parameter could invoke the block, and in the general case, any other parameter could

obtain a reference to the block. Any method call involving an argument that may reference

the block could call the block as well. If a reference is written to shared memory, such as

an instance variable or global variable, analysis becomes even more difficult.

With yield, the callee uses block_given? to check if there is a block argument to

call. If the callee uses one of the above techniques to obtain a reference to its block, it may

also compare against nil to check if a block was actually provided. Thus, if we wish to

determine if a method is Block-Optional, we will need to successfully prune such nil

36

comparisons in the negative case. This will, unsurprisingly, be an instance of the Constant

Propagation problem.

To infer block use with an explicit block parameter or a call to Proc.new(), the following

framework provides a conservative analysis:

• Conservatively identify potential aliases to the block parameter.

• For B P tnil, βu:

– Run CSS, fixing the block argument to B.
– Identify reachable invocations of #call, #[], and #=== on a potential alias.

These are guaranteed block invocations.
– Identify method calls with a potential alias as the block argument. The block is

potentially invoked if any potential dispatch target is Block-Requried.
– Identify method calls with a potential alias as an argument. The block is poten-

tially invoked, unless interprocedural analysis (eg. inlining) proves otherwise.

This provides the equivalent information as the information derived during yield anal-

ysis, with weaker accuracy due to the alias analysis dependency.

4.1.5 Inferring Block Arity

Given a set of potential block call sites, we develop an estimate of how many arguments

will be provided to the block argument. Each call may be of either fixed or variable arity.

The total arity is thus a (potentially infinite) set of integers. Fixed-arity block invocations

add their arity to that set. Variable-arity invocations add to the set all possible values for

the number of arguments they provide; inferring this requires tracking potential sizes of

array objects throughout the method in question. Our current implementation does not

attempt to infer this; variable-arity invocations imply the block could be called with all

potential arities under our analysis.

4.1.6 Inferring Block Argument Types

Block call-sites are simply method calls, so much like any method call, it participates during

type inference (CPA). The built-in Proc#call method does not have any type information

37

accompanying the analyzer, so during CPA the block will be presumed to return an object

of any type. We do not consider how to efficiently discern this information. However, CPA

may infer the types of the arguments passed to the block, which is a relevant portion of

the method’s block API. For example, the analyzer correctly infers that the times method

(Listing 4.2) calls its block argument with an object of type tFixnum, Bignumu.

Listing 4.2: Example: Inferable block argument types
def t imes (n)

i = 0
while i < n

yield (i)
i = i + 1

end
end

Variable arity again obstructs this analysis, as it requires knowing the types of elements

inside an Array. DRuby addresses this with the addition of Tuple types to its type system.

[FAFH09a]

4.1.7 Discovering Errors

We developed this analysis in order to report errors to the programmer who wrote the

methods in question. The analyses discussed so far imply a number of potential errors that

could be uncovered about a method M and its behavior with respect to blocks:

• M P Block-Foolish.

• M P Block-Ignored; M is called with a block.

• M P Block-Required; M is called without a block.

• A � Block-AritypMq, A � Z; M is called with a block which accepts α � Z
arguments; α X A � H.

• M is called with a block, and M calls the block with arguments of types T �
pT1, T2, ..., Tkq. The block’s computation is invalid with argument types T .

38

We implement and test conservative analyses for the first four error types above. The

analyzer will incidentally discover some errors of the fifth kind during constant propagation,

but no additional analysis is implemented to directly find such errors.

4.2 Exit Behavior Analysis

A method M may exit in one of several ways in Ruby. The following list considers them

roughly in an intuitive order of prevalence in Ruby code:

1. Normally, with a return value

2. Abnormally, due to an exception

3. Via non-local jump (a block returns from its enclosing scope)

4. via throw/catch

5. By invoking a continuation

Given a method M , how do we characterize how it exits? Like block behavior, this is a

relevant feature of how one uses a method. We consider a smaller, but important question:

does a method M exit due to an exception never, sometimes, or always? CPA already

provides a mechanism for parameterizing methods by argument types, so we can consider

this question about M both in its general form, and when it is provided specific argument

types.

4.2.1 Characterizing Exception Behavior

As we did during Block-use analysis, we break methods into sets based on their behavior:

Definition 5. A method M P Raise-Never � Methods if M never exits bearing an
exception.

Definition 6. A method M P Raise-Maybe � Methods if M sometimes exits bearing
an exception.

Definition 7. A method M P Raise-Always � Methods if M always exits bearing an
exception.

39

If a CFG equivalent to M ’s CFG has no exception-bearing edges leading to M ’s “Exit”

block, then M P Raise-Never. Similarly, if only exception-bearing edges lead to M ’s

“Exit” block, then M P Raise-Always. Raise-Maybe is thus characterized by the pres-

ence of both types of exit edges. Non-terminating methods are in Raise-Never.

However, any method call in user code will, during the construction of the CFG, create

an exception-bearing edge. Only the most trivial of methods will, after CFG generation,

lack an exception-bearing edge to the Exit. All methods will have a “normal” exit edge

immediately after construction.

4.2.2 Raise Analysis During Constant Propagation

Given that methods will rarely reveal much about their exit behavior given a conservative

CFG, we must remove some exception and normal edges in the CFG based on knowledge of

the methods called. For example, the type-checking method Module#=== never raises, and

Kernel#raise always raises. If we identify calls to these methods, we may trim exception-

bearing and normal edges; this approach applies to both built-in methods and user code.

Presently, we implement a simple heuristic. During constant propagation (see 3.7),

exception edges in the CFG are encountered under two conditions: a failed yield, and

exiting a method call. We wish to determine which exception edges are executable, which

constant propagation is already responsible for. Normally, if a method call is found to be

executed, all edges leaving it are marked executable.

Instead, we mark the edges leaving a method call by the following heuristic. If the set

of potential methods called is M:

• The normal edge is executable if DM P M,M P Raise-NeverYRaise-Maybe

• The exception-bearing edge is executable if DM P M,M P Raise-AlwaysYRaise-Maybe

If a methodM P M is implemented in C, its raise behavior must be annotated manually.

If it is implemented in Ruby, then the analysis proceeds recursively, just as CPA does.

40

This analysis could also be applied to consider the argument types provided to the

method. Many methods, such as the basic arithmetic operators, only raise when provided

non-Numeric arguments. This would improve the accuracy of the analysis at the expense

of time and space. Since exceptions are likely to be raised due to improper argument types,

specializing this analysis on argument types improves results and allows accurate modeling

of standard library methods.

4.3 Unreachable Code Analysis

Unreachable code elimination is one of the simpler compiler optimizations one can perform

given a CFG. However, we delay performing this analysis until after constant propagation,

as CSS’s edge elimination may improve the results of dead code elimination.

Any node not reachable from the start node is dead. By computing the depth-first

search tree starting at the Enter block (ignoring fake edges, critically) one obtains a set

of blocks that are reachable; subtracting this set from the set of all blocks yields the set

of unreachable basic blocks. Any such blocks can be removed, reducing the size of the

resulting binary and potentially simplifying generated code (branches becoming jumps, for

example). For a linter, however, such nodes represent an error by the programmer, and

should be reported. Deleting the block is not an option.

Given an approach to identify unreachable CFG instructions, we must define precisely

how to determine that source-level code is unreachable. The CFG is unsuitable for this

task, but the AST which generated it is close to the source representation.

Definition 1. A node in an Abstract Syntax Tree is unreachable if and only if all in-

structions in the CFG implementing that node’s semantics are unreachable.

As an AST node carries with it source line and column information, if we determine

which nodes are unreachable, we create a warning at that line and column. Any node which

is unreachable will be the root of a subtree of unreachable nodes. With all nodes in the

41

AST annotated as such, simply depth-first-searching for unreachable nodes will discover all

such subtrees.

Algorithm 2 Incorrect, naïve reachability algorithm
Input: G � pV,E,Enter, Exitq, a control-flow graph
for node P G.AST do

node.reachableÐ false
end for
for block PDFS(G.Enter) do

for instruction P block do
instruction.node.reachableÐ true

end for
end for

The naïve approach, in which all nodes are marked unreachable first, then all reachable

instructions mark their nodes as reachable, seen in algorithm (2), fails, though. It fails to

account for AST nodes that themselves generate no instructions when walked. A paren

node is one example: upon reaching a paren node when building the CFG, we simply walk

all of its children in sequence. No instructions specific to the paren node will be generated,

so the paren node will be left marked unreachable. This result came from an insufficient

definition of an unreachable AST node (4.3). The revised definition follows:

Definition 2. A node in an Abstract Syntax Tree is unreachable if and only if all instruc-

tions in the CFG implementing that node’s semantics are unreachable, and the set of

such instructions is nonempty.

A revised algorithm only marks nodes unreachable if they have instructions in unreach-

able basic blocks. We can find all unreachable blocks in OpV q time by depth-first searching

from G.Enter to find reachable blocks, then subtracting this set from the set of all blocks

to get the set of unreachable blocks. The correct algorithm, 3, implements this.

If any instruction that is generated for a given AST node lies in a reachable block, then

the final loop will mark that node as reachable. Yet, if no instructions exist for a given

node, it will be marked reachable unconditionally.

42

Algorithm 3 Correct reachability algorithm
Input: G � pV,E,Enter, Exitq, a control-flow graph
ReachableBlocksÐ φ
for block P DFSpG.Enterq do

ReachableBlocksÐ ReachableBlocksY tblocku
end for
DeadBlocksÐ G.V �ReachableBlocks
for node P G.AST do

node.reachableÐ true
end for
for block P DeadBlocks do

for instruction P block do
instruction.node.reachableÐ false

end for
end for
for block P DFSpG.Enterq do

for instruction P block do
instruction.node.reachableÐ true

end for
end for

Given such an annotated AST, reporting unreachable code is simple. As noted earlier,

all children of an unreachable AST node are also unreachable, yet we only wish to warn

against the root of each subtree; additional warnings are unnecessary. A modified depth-

first search applies these warnings (see Algorithm 4).

Algorithm 4 Generate Warnings for Unreachability
procedure DeadDFS(node) � node: AST node, whose subtree is annotated as above

if node.reachable then
for child PChildren(node) do

DeadDFS(child)
end for

else
Warnp‘deadcode1, node.line_numberq

end if
end procedure

43

4.4 Unused Variable Analysis

Finding unused variables as an automated analysis technique goes at least to Johnson’s

original Lint for C. He elegantly describes the motivations for warning programmers about

unused variables [JI77]:

As sets of programs evolve and develop, previously used variables and arguments

to functions may become unused; it is not uncommon for external variables, or

even entire functions, to become unnecessary, and yet not be removed from the

source. These “errors of commission” rarely cause working programs to fail, but

they are a source of inefficiency, and make programs harder to understand and

change.

Since then, this analysis has continued to be implemented in compilers [Fou11], linters

alike [Cro11, Sof11], and editors [Fou10].

Morgan’s Static Single Assignment algorithm tracks both the (only) definition of each

variable in SSA form as well as the instructions that use each variable. These are the

DefinitionpT q and UsespT q sets, respectively. Once the SSA transformation is complete,

these sets are populated. However, the SSA transformation was a prerequisite for many of

the analyses performed thus far, which may have pruned edges not taken from the CFG.

Any uses of a variable in an unreachable block will still be present in the UsespT q set.

Thus, for each variable, we must ensure the variable is used at least once in a reachable

code block. Algorithm (5) summarizes this approach cleanly, finding unused variables and

pruning unreachable instructions from UsespT q.

This algorithm finds each variable which is defined and then never read in a reachable

block. It is OpV � Uq, where U is the number of times a variable is used.

However, there exist further variables that may represent an error: given an unused vari-

able y, all variables whose only use is in computing y may also be considered unnecessary.

Consider listing 4.3, where x, y, and z are unnecessary, but a is not:

44

Algorithm 5 Algorithm Warning for Unused Variables
function SimpleUnused

resultÐ V ariables
for var P V ariables do

for use P Usespvarq do
if use.block P ReachableBlocks then

resultÐ result� tvaru
else

Usespvarq Ð Usespvarq � tuseu
end if

end for
end for
return result

end function

Listing 4.3: Additional Unused Variables
x = ’ h i ’
y = x ∗ 300

a = ’EOF’
z = ge t s (a)

The above algorithm correctly identifies y and z as unused local variables, as they are

never used. Since y was defined by a side-effect-free computation, removing the entire line

y � x � 300 has no effect on the overall program. If one did so, x is then unused, which

a programmer might find concerning. We cannot apply the same reasoning to eliminate

z � getspaq, as this would change the meaning of the program. Thus, the calling of an pure

method may be removed, as can a simple assignment. However, the calling of an impure

method may not be removed.

We rely on method resolution and purity analysis [3.6] to determine which method calls

we may kill. Assignments and φ-nodes are always killable. This gives us a simple worklist

algorithm that propagates removal of uses of variables backward (Algorithm 6). It is worth

noting that this algorithm also infers unused formal arguments.

45

Algorithm 6 Algorithm Warning for Chained Unused Variables
function Killable(I)

if I.type P tassign, lambdau then
return true

else if I.type � call then
return AllPurepI.possible_methodsq

else
return false

end if
end function

function ChainedUnused
worklistÐ SimpleUnusedp)
resultÐ φ
while worklist � φ do

unused_var Ð poppworklistq
resultÐ resultY tunused_varu
Warn(unused_var, Definitionpunused_varq.line_number)
if Killable(Definitionpunused_varq) then

for all operand P OperandspDefinitionpunused_varqq do
Usespoperandq � Usespoperandq � tDefinitionpunused_varqu
if Usespoperandq � φ then

worklistÐ worklistY toperandu
end if

end for
end if

end while
end function

46

Chapter 5

Warnings and Errors Discovered

This chapter details the diagnostics the analyzer is capable of generating when it encounters

inferable errors and warnings in Ruby code. For the purposes of this discussion, a “warning”

indicates a potential error by the user. Some of these diagnostics are also emitted at runtime

by the Ruby interpreter, and some are not. Some runtime errors more readily discoverable

than others without the aid of analysis tools. We attempt to clarify for each diagnostic

precisely how it would be traditionally encountered.

5.1 Load-time Errors

The following sections consider program errors whose negative effects occur immediately

upon loading the program into the Ruby interpreter.

5.1.1 Top-Level Nontermination or Stack Overflow

Class and module definitions are executed, and as such, metaprogramming techniques com-

monly utilize loops or recursion to modify the class creation process. This presents the

possibility of introducing an infinite loop or recursion during class creation - preventing

the program from even beginning to process its input. Infinite recursion will result in a

StackOverflowError and likely terminate the Ruby interpreter; infinite loops are naturally

more difficult to detect.

As we directly interpret predictable top-level code (3.3), we will ourselves observe a

StackOverflowError if one occurs. We catch this error and output this information to the

user. We terminate analysis at this point, though we could potentially attempt to continue

47

in an undefined state. In addition, during analysis, we track how many steps we have taken,

to prevent the analyzer itself from looping infinitely; if a capped number of steps X are

taken, a SimulationNonterminationError is raised and reported to the user. By default,

X � 100, 000 basic blocks.

5.1.2 Double Module Inclusion

When a class or module includes or extends a module, the module is inserted into a

well-defined location in the class’s inheritance hierarchy. If the module is included or

extended again, Ruby ignores the request, as such a request has no effect. We consider

this to merit a warning. Since most module inclusions occur in top-level class and module

definitions, we will observe them during top-level simulation (3.3). We report this as a

DoubleIncludeError and continue analysis.

The Ruby interpreter never emits a diagnostic for this behavior.

5.1.3 Mismatched Superclasses

Ruby’s open classes present opportunities for error. When a class is defined with superclass

C1 and later re-opened with superclass C2, an error is immediately raised. When we build

our CFG, we expand these semantics explicitly; during top-level simulation, the appropriate

raise instructions will be executed if a specified superclass is incorrect. In fact, with CFG

optimization enabled, the CFG will be reduced to a deterministic exception, with the rest

of the code in the file optimized away. If the error occurs during simulation, or if the

reduced CFG implies a guaranteed exception, we report this error to the user.

This error would be discovered by a programmer immediately upon running the pro-

gram.

48

5.1.4 Opening a Class as a Module (and vice-versa)

Another issue raised by open classes is that one might confuse a class for a module or

vice-versa. This mistake primarily stems from the fact that both classes and modules can

be used as namespaces. Attempting to open a class using module syntax, or a module

using class syntax, results in an exception. This exception is also present in the lowered

representation of the class C ... end and module M ... end syntactic constructs. It

is observed and reported in the same manner as mismatched superclasses.

This error would be discovered by a programmer immediately upon running the pro-

gram.

5.2 Run-time Errors

The remaining errors may occur anywhere in a program, and are observed and reported

in the same way regardless of their presence at the top-level or in method bodies. A

common theme of the following errors is that many will rely on method resolution, and thus

their efficacy will improve with type inference, either via CPA, or through user-provided

annotations.

5.2.1 Unnecessary Block Arguments

As described in Chapter 4 (4.1), Ruby silently ignores when a block is provided and not

used. This is because Ruby does not know that the block will not be used. Our analysis can

prove some methods are in Block-Ignored, and report an error when a block is provided

to them. When we encounter a method call during constant propagation, we already

conservatively calculate the possible dynamic dispatch targets. If all of these targets are in

Block-Ignored, and a block is provided to the call, we issue an UnnecessaryBlockError

and continue analysis.

49

5.2.2 Missing Block Argument

In the same vein as unnecessary block arguments, we may also warn when a called method is

potentially in Block-Required and no block is provided. This is prone to false positives:

our analysis infers a method to be in Block-Required when we cannot prove it to be

either Block-Optional or Block-Foolish. As both of those sets are undecidable, we

cannot be sure that no block was provided at a call-site because the method was really in

Block-Ignored. However, Block-Ignored methods are typically constructed with a

relatively simple set of patterns, and we correctly infer these patterns. We are thwarted

primarily by block capture and forwarding; analyzing this case precisely depends on precise

type information.

Regardless, we issue a MissingBlockError if all potential targets of dynamic dispatch

are in Block-Required and no block argument is provided. This error may be found at

runtime if the callee attempts to invoke the (not provided) block argument.

5.2.3 Incorrect Arity

Method resolution provides an avenue for checking arity as well. When a method is called

with a fixed number of arguments, and we know all possible targets of that method call, we

can ensure at least one will accept that number of arguments. Variable arity is currently

not considered, as the analyzer lacks any facility for tracking the potential size of an array

throughout a CFG. An IncompatibleArityError is issued when a method call is found

with a number of arguments that is not compatible with any potential dynamic dispatch

target.

Ruby raises an ArgumentError when this error occurs at runtime.

5.2.4 Privacy Errors

Ruby offers both protected and private methods, and the implementation differs some-

what from other languages: to execute a private method, the user must not use a receiver

50

in the method call at all, even self. This is an easy error to commit when working with

private methods. Much like the previous sections would indicate, this error is found when

all potential dynamic dispatch targets have privacy modifiers incompatible with the invo-

cation. A DisallowedPrivateError or DisallowedProtectedError is issued when this

error is discovered.

Ruby raises a NoMethodError with an appropriate message when this error occurs at

runtime.

5.2.5 Missing Method Errors

If a callsite is found with no matching dynamic dispatch targets, a NoSuchMethodError

is issued. Among the typical causes of such an error, calling a non-existent method is

especially commonly due to typos; incorrectly typing the name of a local variable will be

considered a method call with self as the receiver.

Ruby raises a NoMethodError with an appropriate message when this error occurs at

runtime.

5.2.6 Improperly Overriding Core Methods

A number of methods exist in Ruby that have expected return types. The to_s method

should always return a String, and ! should always return a boolean. These methods may

be overridden, but if the return type is incorrect, then they may interact improperly with

the expectations of core language constructs. A small set of methods have their expected

types hard-coded into the analyzer. If a method with a name in that set is found to have

an incompatible return type, then an ImproperOverloadTypeError is issued.

51

5.3 Warnings

The following are potential sources of logic error that we consider worth reporting to the

user. They do not necessarily indicate a error, and do not cause exceptions at runtime.

The analyzer may be directed to ignore these warnings via comments in analyzed code.

5.3.1 Catching Exception

A rescue clause in Ruby uses a list of potential handlers to determine whether to catch

a raised exception. These handlers are any object that responds to #===, but are nearly

always subclasses of Exception. A common error in Ruby is to use rescue Exception

to catch “any exception”, but this is usually not correct. Exception is the root class

in the exception hierarchy, but its subclasses include SystemExitError, which is raised

by the standard exit() method. SyntaxError is also a subclass of Exception, as is

NoMemoryError, SystemStackError, and SignalException. While there exist reasons to

catch all of these exceptions, it is unlikely that most programmers wish to do so. When

one wishes to catch “any exception”, they typically mean TypeError, ArgumentError, and

so on, not interpreter-level errors. Thus, the correct idiom is rescue StandardError, the

base class of all these common user-level exceptions.

We discover this potential error during CFG construction, and report it as a

RescueExceptionWarning.

5.3.2 Dead Code

As discussed in Chapter 4, we discover unreachable code after trimming edges in constant

propagation. We attempt to minimize a flood of warnings by only reporting the lines of

code corresponding to the highest-level unreachable AST nodes. One issue with reporting

dead code is that the errors listed previously result in exceptions, which redirect control

flow. If analysis uncovers a NoMethodError in a block of code, all dominated expressions

will not execute due to the guaranteed exception. This is an instance of the cascading error

52

problem affecting both compilers and linting tools alike. We do not presently address this

issue.

5.3.3 Unused Variables

As discussed in Chapter 4, we issue UnusedVariableWarnings upon the discovery of unused

variables. Like dead code discovery, variables will be found to be unused if they follow

guaranteed exceptions. As with dead code, we do not presently attempt to address the

resulting cascading errors.

53

Chapter 6

Concluding Remarks

6.1 Our Results

Our top-level simulation successfully emulates widely used metaprogramming techniques,

including those in Ruby’s standard library (Struct, DelegateClass). Combining all of the

analyses, we successfully infer the block use patterns of many test examples and standard

library methods, as well as their raise behavior. We warn statically against new errors

which otherwise would fail only at runtime, or be silently ignored.

The code for the analyzer can be found at https://www.github.com/michaeledgar/laser/,

hosted by GitHub, a free code hosting service using PKI authentication.

6.2 Limitations

A small but significant subset of Ruby is not supported, including the “special” Ruby

variables ($&, $1, etc.), super in dynamically-defined methods, and all but one block

argument semantics. The stubbed-out standard library is not complete. Recursion varying

by local block types is not supported (recursive customization [Age95]).

6.3 Future Work

This work opens the door to further analyses. Ruby has many tricky corner cases the

analyzer could warn against, including the semantics of implicit super, mismatched parallel

assignment, and for-loops (namely, their lack of a new scope). A block’s arguments shadow

54

https://www.github.com/michaeledgar/laser/

local variables with the same name; this is warned against by Ruby, but we could easily

warn against it ourselves statically. Determining precisely which exception types a method

might raise is within the reach of our existing exception analysis.

The analyzer could be integrated with documentation tools, editors, and/or compilers

to improve the results of each.

55

List of Algorithms

1 Inferring Yield Use . 35

2 Incorrect, naïve reachability algorithm . 42

3 Correct reachability algorithm . 43

4 Generate Warnings for Unreachability . 43

5 Algorithm Warning for Unused Variables 45

6 Algorithm Warning for Chained Unused Variables 46

56

References

[ACF09] J. An, A. Chaudhuri, and J. S. Foster. Static Typing for Ruby on Rails. In

Proceedings of the 2009 IEEE/ACM International Conference on Automated

Software Engineering, pages 590–594. IEEE Computer Society, 2009.

[ACPR] R. C. Andreas, B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond

safety. In Computer Assisted Verification ’06, LNCS, 4144:415–418.

[Age95] O. Agesen. The Cartesian Product Algorithm. In ECOOP’95—Object-Oriented

Programming, 9th European Conference, Åarhus, Denmark, August 7–11,

1995, pages 2–26. Springer, 1995.

[CFR�89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An Ef-

ficient Method of Computing Static Single Assignment Form. In Proceedings of

the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 25–35. ACM, 1989.

[CPR06] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems

Code. ACM SIGPLAN Notices, 41(6):415–426, 2006.

[Cro11] Douglas Crockford. Jslint: The javascript code quality tool, April 2011.

[Dav11] Ryan Davis. parse_tree & ruby_parser, March 2011.

[Duf] M. Dufour. Shedskin: An Optimizing Python-to-C++ Compiler. PhD thesis,

Master’s thesis, Delft University of Technology, 2006.

[Edg11a] Michael Edgar. Ripper loses MLHS variables in the presence of an LHS splat,

February 2011.

57

[Edg11b] Michael Edgar. Ripper.sexp should return an :array node for words/qwords,

February 2011.

[FAF09] M. Furr, J. D. An, and J. S. Foster. Profile-Guided Static Typing for Dynamic

Scripting Languages. In Proceeding of the 24th ACM SIGPLAN Conference

on Object Oriented Programming Systems Languages and Applications, pages

283–300. ACM, 2009.

[FAFH09a] M. Furr, J. D. An, J. S. Foster, and M. Hicks. Diamondback Ruby Guide.

University of Maryland, Computer Science Department, April 2009.

[FAFH09b] M. Furr, J. D. An, J. S. Foster, and M. Hicks. Static Type Inference for

Ruby. In Proceedings of the 2009 ACM Symposium on Applied Computing,

pages 1859–1866. ACM, 2009.

[FAFH09c] M. Furr, J. D. An, J. S. Foster, and M. Hicks. The Ruby Intermediate Lan-

guage. In Proceedings of the 5th symposium on Dynamic languages, pages

89–98. ACM, 2009.

[Fou10] Eclipse Foundation. Java compiler errors/warnings preferences, June 2010.

[Fou11] Free Software Foundation. Warning options - using the gnu compiler collection

(gcc), April 2011.

[Hec77] M. S. Hecht. Flow Analysis of Computer Programs. The Computer Science

Library Programming Language Series, 1977.

[JBGG96] G. James, J. Bill, S. Guy, and B. Gilad. The Java Language Specification,

1996.

[JI77] Johnson and Bell Telephone Laboratories Inc. Lint, a C Program Checker.

1977.

58

[Kri07] K. Kristensen. Ecstatic: Type Inference for Ruby Using the Cartesian Product

Algorithm. Master’s thesis, Aalborg University, 2007.

[Mor98] R. Morgan. Building an Optimizing Compiler. Digital Press Newton, MA,

USA, 1998.

[PC94] J. Plevyak and A. A. Chien. Precise Concrete Type Inference for Object-

Oriented Languages. ACM SIGPLAN Notices, 29(10):324–340, 1994.

[Sof11] Sureshot Software. Sureshot software, March 2011.

[Tur37] A.M. Turing. On computable numbers, with an application to the entschei-

dungsproblem. Proceedings of the London Mathematical Society, 2(1):230, 1937.

[WZ91] M. N. Wegman and F. K. Zadeck. Constant Propagation with Condi-

tional Branches. ACM Transactions on Programming Languages and Systems

(TOPLAS), 13(2):181–210, 1991.

59

Appendix A

Appendix A: Proofs of Related

Theorems

A.1 RequiredM is Undecidable

As described earlier (4.1.2), determining if a method is Block-Required essentially asks

if the method ever enters a particular state. We define the decision formulation of this

question as the language:

RequiredM � txMy | M is a method and may terminate via an exception raised by

attempting to invoke the block argument when none is provided.u

This is, in the general case, an undecidable language, which we may show by reducing

a known undecidable language to RequiredM .

Proof. We reduce ATM to RequiredM as follows: 1

Input: M is a TM, w P Σ�

Output: N is a Ruby method

1Recall the definition of ATM : ATM � txM, wy | M is a TM and terminates on w with acceptu

60

Algorithm:

1. Create a Ruby method N taking no arguments, which when run:

(a) Runs Mpwq.
(b) If M is in the accept state, yield.
(c) Otherwise, return.

2. Return N.

We must show that N is in RequiredM if and only if M accepts w.

• If M accepts w, then step 1 of N terminates in finite time. At step 2, the method
yields to its block argument. However, if N is called without a block argument, it
will still yield. Thus, N P RequiredM .

• If M rejects w, then step 1 of N terminates in finite time. It then returns at step 3.
This method never yields, so it never raises an exception based on yielding. Thus,
N R RequiredM .

• IfM loops forever on w, then step 1 of N never terminates. This method never yields,
so it never raises an exception based on yielding. Thus, N R RequiredM .

As ATM is undecidable, and we have reduced it to RequiredM , RequiredM too must

be undecidable.

A.2 OptionalM is Turing-unrecognizable

Determining if a method is Block-Optional essentially asks if the method never enters a

particular state: the state in which it yields to the block argument. We define the decision

formulation of this question as the language:

OptionalM = txMy |M is a method and never terminates via an exception raised by

attempting to invoke the block argument when none is provided.u

This is, in the general case, a Turing-unrecognizable language, which we may show by

reducing a known unrecognizable language to OptionalM .

61

Proof. We reduce ATM to OptionalM using the exact same reduction as the proof of the

undecidability of RequiredM . (See A.1) 2

We must show that N is in OptionalM if and only if M rejects w or M runs forever

on w.

• If M accepts w, then step 1 of N terminates in finite time. At step 2, the method
yields to its block argument. However, if N is called without a block argument, it
will still yield. Thus, N R OptionalM .

• If M rejects w, then step 1 of N terminates in finite time. It then returns at step 3.
This method never yields, so it never raises an exception based on yielding. Thus,
N P OptionalM .

• IfM loops forever on w, then step 1 of N never terminates. This method never yields,
so it never raises an exception based on yielding. Thus, N P OptionalM .

As ATM is Turing-unrecognizable, and we have reduced it to OptionalM , so too must

OptionalM be Turing-unrecognizable.

2Recall the definition of ATM : ATM � txM, wy | M is a TM and either M terminates on w with reject,
or M runs forever on wu

62

	Static Analysis for Ruby in the Presence of Gradual Typing
	Recommended Citation

	Abstract
	Table of Contents
	Introduction
	Static Analysis
	Dynamic Typing
	Ruby's Dynamic Capabilities
	Syntax Aids Analysis Greatly
	Emulating Load-time Metaprogramming
	Static Single Assignment
	Constant Propagation
	Ruby Blocks: A Prime Analysis Target
	Block Use Mechanics are Diverse
	Determining the Presence of a Block
	Invoking a Block
	Capturing a Reference to a Block

	Prior Art
	Ripper
	Type Inference: Diamondback Ruby
	Type Inference: Cartesian Product Algorithm
	Type Inference: Ecstatic
	YARD

	Construction and Low-Level Analysis of a Ruby CFG
	Resolving Scopes
	Building the Control Flow Graph (CFG)
	CFG Intermediate Representation
	Handling Blocks (Closures)
	Fake Edges

	Top-Level Simulation
	Static Single Assignment
	Type Inference: Cartesian Product Algorithm
	Detecting Purity
	Constant Propagation
	Constant Propagation: Method Calls
	Constant Propagation: Types and Branches
	Constant Propagation: Lambda Definitions
	Constant Propagation: Supporting Algebraic Identities
	Constant Propagation: Binding Complications

	High-Level Analyses
	Inferring Block Use Patterns
	Characterizing Block Use
	Complexity of Characterization
	Inferring Block Use: yield
	Inferring Block Use: Proc#call
	Inferring Block Arity
	Inferring Block Argument Types
	Discovering Errors

	Exit Behavior Analysis
	Characterizing Exception Behavior
	Raise Analysis During Constant Propagation

	Unreachable Code Analysis
	Unused Variable Analysis

	Warnings and Errors Discovered
	Load-time Errors
	Top-Level Nontermination or Stack Overflow
	Double Module Inclusion
	Mismatched Superclasses
	Opening a Class as a Module (and vice-versa)

	Run-time Errors
	Unnecessary Block Arguments
	Missing Block Argument
	Incorrect Arity
	Privacy Errors
	Missing Method Errors
	Improperly Overriding Core Methods

	Warnings
	Catching Exception
	Dead Code
	Unused Variables

	Concluding Remarks
	Our Results
	Limitations
	Future Work

	List of Algorithms
	References
	Appendix A: Proofs of Related Theorems
	RequiredM is Undecidable
	OptionalM is Turing-unrecognizable

