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Dartmouth College Computer Science Technical Report TR2015-777

COMMUNICATION COMPLEXITY OF DISTRIBUTED
STATISTICAL ALGORITHMS

By James Brofos

Dartmouth College

This paper constructs bounds on the minimax risk under loss
functions when statistical estimation is performed in a distributed en-
vironment and with communication constraints. We treat this prob-
lem using techniques from information theory and communication
complexity. In many cases our bounds rely crucially on metric en-
tropy conditions and the classical reduction from estimation to test-
ing. A number of examples exhibit how bounds on the minimax risk
play out in practice. We also study distributed statistical estimation
problems in the context of PAC-learnability and derive explicit algo-
rithms for solving classical problems. We study the communication
complexity of these algorithms.

1. Introduction. This paper is concerned with the theory of the mini-
max risk and PAC-learning and their connections with distributed comput-
ing. We introduce definitions of parallel protocols emerging from commu-
nication complexity and then describe a natural extension of the minimax
risk for distributed computing following [4]. We also discuss PAC-learnability
in distributed environments for the problems of half-space and disjunction
learning. The goal of this work is to begin to carefully characterize the
amount of communication that is necessary in order to estimate parameters
of statistical models.

With the explosion of big data in recent years, it has become increas-
ingly important for researchers to investigate and develop algorithmic ap-
proaches to handling massive data sets. Since these data sets, and indeed
the algorithms used for interpreting them, may sometimes be too memory-
intensive for a single computer, it makes sense to consider distributing the
task of learning from data across multiple computers. This work focuses on
understanding the amount of communication that is necessary for solving
particular statistical estimation problems.

Until recently, statistics dealt primarily with the case where n observa-
tions are drawn i.i.d. from a probability distribution f (·; θ) parametrized
by θ. The task at hand is to compute an estimator of θ, commonly denoted
θ̂, from the available data. A natural question that arises from statistical
estimation theory is whether or it is possible to quantify, in some sense, the
desirability of a particular estimator. This question has given rise to the
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2 JAMES BROFOS

theory of minimax estimators [13]. In such instances where the data and, in
fact, parameters of the algorithm, are distributed across multiple computers,
minimax theory of estimation is remarkably lacking in substance. The only
prior work, as far as the author knows, in this area can be found in [4].

In this work we expand on the prior literature by carefully analyzing
performance of estimators under the `1 risk measure and develop an ex-
plicit information-theoretic inequality for this purpose. We also introduce
a helpful relationship between Lipschitz parametrizations and show how
this can be informative in deriving distributed measures of complexity for
statistical algorithms. We also expand on the prior literature by analyzing
PAC-learnable quantities following [2], but focus on developing explicit algo-
rithms with complexities measured by bits. This includes the development
and analysis of an algorithm for PAC-learning disjunctive normal forms and
half-spaces.

2. Notation. Given a parameter space Θ ⊂ Rd with |Θ| ≥ 2 (if |Θ| < 2
then there is nothing to estimate), a collection of K points (conveniently
thought of as parameters) in Θ, denoted {θ1, . . . , θK}, is called δ-separated
if for i 6= j the `1-distance of θi and θj is lower bounded by δ. A maximal
δ-packing has size,

max {K ∈ N : {θ1, . . . , θK} ⊂ Θ is δ-separated} .(2.1)

The notion of a maximal δ-packing will be crucial to the information-theoretic
results that are formulated later in the work.

Furthermore, we say that every θ ∈ Θ induces a probability distribution
from which samples are drawn. In particular, we write that fθ = f (·; θ) is
a probability distribution parametrized by θ. We denote F = {fθ : θ ∈ Θ}
to be the class of probability distributions parametrized by points of Θ. We
use the notation [N ] to refer to the set of natural numbers up to N , namely
{1, 2, . . . , N}.

For some of our analyses it will be important for us to define a notion
of quantization. This refers to the process of approximating a real number
by a finite bit-string. Indeed, if x is a real number in the range [−a,+a],
then one can construct a quantization of x, denoted x̃, using log2m-bits for
some fixed m ∈ N. Each configuration of the log2m bits (of which there are
m) refers to equally-spaced points in the range of [−a,+a]. Hence it can be
readily verified that |x− x̃| ≤ 2a

m so that the quantization becomes more
accurate as more bits are used in the representation.

2.1. Protocols. Let Γ, a natural number, denote the number of computers
and suppose that each is provided a distinct data set Xi for i ∈ [Γ], where we
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assume that all of the Xi ∈ Rn×p. Therefore, the total number of data points
present in the statistical estimation procedure is n× Γ. Given an estimator
θ̂ of θ, this setup seeks to construct θ̂ via local operations on each machine
and a limited amount of communication within the system. Thereby, the
protocol attempts to recover the original θ ∈ Θ on the basis of data.

We formally define this framework in the language of communication com-
plexity [9]. We focus on multi-computer protocols Π such that the message
broadcast at each round of communication is a measurable function of the
available data Xi and (conceivably) of prior broadcasts. Let M denote the
set of all messages sent in all rounds. We say that θ̂ is mapping of M into
the parametrization space Θ.

If Π permits m rounds of communication, then denote by Mi,j the message
sent by the ith computer at the jth iteration. Then the quantity,

C =
Γ∑
i=1

m∑
j=1

Length (Mi,j) ,(2.2)

is the total communication cost of the protocol on the input. The function
Length (·) gives the length, in bits, of the shortest encoding of the message
argument.

Throughout our analysis we will impose restrictions on the size of C. In
particular, if Π consists of only a single round, then we impose an upper
bound on the message length for the ith machine Length (Mi,1) ≤ Bi. In
each round, the computers write their message on a “blackboard,” which
the other computers may read from at no additional cost.

Remark 2.1. We assume that computations performed by computers
locally consume no cost and that, additionally, the computation of θ̂ (M)
consumes no cost beyond that inherent in broadcasting the set of messages.

In this work we focus primarily on one-round protocols. Although the pre-
ceding discussion attempts to offer an intuitive understanding of a protocol,
some may find it useful to have a rigorous definition of a protocol. For the
purposes of distributed statistical estimation, the following definition will
suffice (similar to the more general definition provided in [9]).

Definition 2.1 (Protocols). For every i ∈ [Γ], let Xi be the data on the
ith machine. Let X be the set of all possible datasets consisting of n points
drawn from distributions in F. A protocol Π with with domain X × . . .×X
(Γ-times) and range Θ is a binary tree where internal nodes v are labeled
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by functions f
(i)
v : X → {0, 1} for a single i ∈ [Γ] and leaf nodes are labeled

by points of Θ.
The behavior of the protocol Π on input (X1, . . . ,XΓ) is given by walking

on the tree until a leaf node is encountered. At each internal node v, Π moves

left if f
(i)
v (Xi) = 0 and otherwise moves right. The cost of the protocol Π is

the height of the tree.

2.2. Minimax Risk Theory. The theory of minimax risk plays a central
role in the analysis of statistical estimators [13]. Minimax risk seeks to quan-
tify the worst-case performance (with respect to the underlying distribution)
of the most effective estimator. In this context, “most effective” refers to the
expected value of a statistical loss function. A common loss function is the
squared-error, though in this paper we also analyze the absolute loss.

We quantitatively capture the quality of an estimator θ̂ by its expected
absolute deviation from truth in the `1 metric,

R
(
θ̂, θ
)

= E
[
D
(
θ̂, θ
)]
,(2.3)

where D (·, ·) is a metric on Θ. From here, we define the minimax risk for
protocols as,

M (Θ, B) = inf
Π

inf
θ̂

sup
θ∈Θ
R
(
θ̂, θ
)
.(2.4)

This can be intuitively thought of as the worst-case quality (with respect to
the class distributions) of the best estimator with the best implementation
under the specified communication budget B; this is to say, Π must obey
the communicatin budget B when constructing θ̂. Note that the expectation
is taken over randomness in the underlying data (and therefore randomness
in the messages). We do not consider randomized protocols, although this
represents an interesting direction for continuing research.

2.3. PAC-Learnability. The notion of the probably approximately cor-
rect (PAC) estimator is an important one in machine learning [1]. The in-
tuition behind the PAC estimator is as follows: that the estimator may be
made to have arbitrarily small deviation from its true value if the number of
samples used to compute the estimator is allowed to grow in an unbounded
fashion. For our purposes, it is equivalent to think of as estimator as being
PAC if it is consistent with its true value.

Example 2.1. As an example of PAC-learnability, consider flipping a
coin with probability of success p. Suppose that n samples are drawn from
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the underlying Bernoulli probability mass function and denote the samples
{X1, . . . , Xn}. Then calculating the empirical average X̄ = n−1

∑n
i=1Xi, we

apply Hoeffding’s inequality,

P
[∣∣X̄ − p∣∣ > ε

]
≤ 2e−2nε2 .(2.5)

This example shows that estimating the success probability of a Bernoulli
random variable is possible with the probability of ε-large deviations expo-
nentially vanishing with n.

2.4. Information Theory and Fano’s Inequality. A staple of our analysis
is Fano’s Inequality [3], which characterizes, in terms of the mutual infor-
mation, the error probability of an estimator of a quantity. The usual form
of Fano’s Inequality is as follows.

Theorem 2.1 (Fano’s Inequality). Let X be a random variable drawn
uniformly at random from one of k ≥ 2 probability distributions parametrized
on Θ ⊂ Rd, denoted {fθ1 , . . . , fθk}. Let Ξ ∈ [k] be the index of that θΞ ∈ Θ
giving rise to X. Then an estimator of Ξ, denoted Ξ̂, has error probability,

P
[
Ξ̂ 6= Ξ

]
≥ 1− β + 1

log2 k
,(2.6)

where β is an upper bound on the Kullback-Leibler divergence for any two
(ordered) pairs of probability distributions fi and fj for i 6= j [11].

Corollary 2.1. Fano’s Inequality may be, in a sense, generalized to
characterize expected error according to some metric [14]. Let D (·, ·) be a
metric on Θ. Then if for i 6= j we have D (θi, θj) ≥ α then,

max
Ξ∈[k]

E
[
D
(
θΞ, θΞ̂

)]
≥ α

2

(
1− β + 1

log2 k

)
.(2.7)

Remark 2.2. Theorem 2.1 and Corollary 2.1 are standard results in in-
formation theory. For proofs of these results, one may refer to the classic text
on information theory by Cover [3] and for a treatment of the generalization
in the corollary refer to [14].

3. Main Results of Information Theory.

Theorem 3.1. This proposition is a modified version of the one found
in [4] to be simultaneously tighter and easier to construct. Indeed, for any
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class of distributions F and for any protocol Π with communication budget
B and parameter space Θ,

M (Θ, B) ≥ δ

(
1− B + 1

log2Kδ

)
,(3.1)

for any δ > 0. Here, Kδ denotes the maximal 2δ packing number of Θ in the
`1 distance measure.

Proof. Fix a distance parameter δ > 0 and form a collection of point
parameters {θ1, . . . , θKδ} that form a maximal 2δ-packing of the parameter
space Θ.

Suppose that we generate an index Ξ uniformly at random from [Kδ]. We
then generate a set of n points from the distribution fθΞ parametrized by
θΞ, denoted Xn. We use the classical approach of reducing the estimation
problem to a testing problem. Denote by M = {M1, . . . ,Mm} the set of
messages communicated in a m-round protocol Π. Denote by θ̂ an arbitrary
estimator of θ based on M and define the testing function,

Ξ̂ = arg min
k∈[Kδ]

∣∣∣∣∣∣θ̂ (M)− θk
∣∣∣∣∣∣

1
.(3.2)

Since the point parameter set forms a maximal 2δ-packing of Θ, we are
guaranteed that ||θ̂ (M) − θk||1 ≥ 2δ whenever Ξ̂ 6= Ξ. Leveraging Fano’s
Inequality,

max
k∈[Kδ]

E
[∣∣∣∣∣∣θ̂ (M)− θk

∣∣∣∣∣∣
1

]
≥ δ · P

[
Ξ̂ 6= Ξ

]
(3.3)

≥ δ

(
1− I (Ξ : M) + 1

log2Kδ

)
.(3.4)

Obviously, I (Ξ : M) ≤ H (M) ≤ B by Shannon’s source coding theorem.
The result follows immediately.

Example 3.1. Let Θ denote the unit ||·||1-ball in Rd. It is a classical re-

sult that Kδ ≥
(

1
δ

)d
. Suppose that each machine i receives n observations Xi

generated from f , where f belongs to a class of distributions F parametrized
by Θ. By applying Theorem 3.1 we obtain,

M (Θ, B) ≥ δ
(

1 +
B + 1

d log2 δ

)
.(3.5)

Because δ is not constrained (aside from being positive), we choose to arbi-
trarily fix δ = 1

10 . Then if,

B =
30dn log2 10− d log2 10− 30n

30n
,(3.6)
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we obtain,

M (Θ, B) = Ω
(
n−1

)
,(3.7)

by elementary algebra.

Example 3.2. Consider a class of distributions F whose support is the
unit interval. If X1, . . . , Xn ∼ f ∈ F are generated i.i.d. from a partic-
ular distribution in the class, we may suppose that we are interested in
computing the mean value of f based on our data, denoted θ. Denoting
the space of mean parameters Θ = [0, 1] and setting B = log2 n (and as-
suming E [Xi] = θ), we will illustrate that for a single-computer algorithm
M (Θ, B) = O

(
n−1/2

)
.

Clearly a natural estimator of the distribution mean is the sample average.
We define the estimator θ̂ = n−1

∑n
i=1Xi. It is apparent that θ̂ ∈ [0, 1]

since the data points are individually within that range. A straightforward
calculation of `2 mean squared error is,

E
[∣∣∣∣∣∣θ̂ − θ∣∣∣∣∣∣2

2

]
= V

[
θ̂
]

= V

[
n−1

n∑
i=1

Xi

]
(3.8)

= n−2
n∑
i=1

V [Xi] = n−1V [X1](3.9)

≤ 1

n
.(3.10)

We now define a quantized version of θ̂ denoted θ̃. In particular, let θ̃
be θ̂ quantized to log2 n bits. Because θ̂ ∈ [0, 1], we are guaranteed that∣∣∣θ̂ − θ̃∣∣∣ ≤ n−1. As such, we may equivalently write θ̃ = θ̂ + ε for |ε| ≤ n−1.

It can be verified (refer to Appendix B) that the worst-case performance in
ε is achieved when ε = n−1. We will now analyze the mean squared error of
θ̃ by first noting the common identity,

E
[(
θ̃ − θ

)2
]

= Bias
(
θ̃
)2

+ V
[
θ̃
]
.(3.11)

Then by direct calculation we see,

Bias
(
θ̃
)

= E
[
θ̃ − θ

]
≤ E

[
θ̂ + n−1 − θ

]
= n−1.(3.12)
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Analysis of the variance of θ̃ is similarly straightforward.

V
[
θ̃
]

= E
[(
θ̃ − E

[
θ̃
])2
]

(3.13)

≤ E
[(
θ̂ + n−1 − E

[
θ̂ + n−1

])2
]

(3.14)

= E
[(
θ̂ − θ

)2
]

(3.15)

Combining our earlier inequality on the final quantity, these results along
with the conclusion in Lemma A.1 yield the result,

E
[∣∣∣θ̃ − θ∣∣∣] ≤ √

E
[(
θ̃ − θ

)2
]

(3.16)

=

√
1

n2
+

2

n
(3.17)

≤
√

4

n
,(3.18)

where the last inequality follows when n ≥ 1, which must be true for any
reasonable estimation task.

Definition 3.1 (L-Lipschitz). Let F be a class of functions parametrized
by Θ ⊂ Rd. Then if ||·||F is a norm on F and if ||·||Θ is a norm on Θ, then
the mapping θ 7→ f (·; θ) is L-Lipschitz if,∣∣∣∣f (·; θ)− f

(
·; θ′
)∣∣∣∣

F
≤ L

∣∣∣∣θ − θ′∣∣∣∣
Θ
.(3.19)

Theorem 3.2. Let F be a class of parametrized functions; that is, F =
{f (·; θ) : θ ∈ Θ, f : [0, 1]s → [0, 1]} for an arbitrary space Θ ⊂ Rd, where
both d, s ∈ N. Let the ||·||1 be a norm on Θ and let ||f ||∞ = supx∈[0,1] f (x; θ)
be a norm on F. If the mapping θ 7→ f (·; θ) is L-Lipschitz, and if L ≥ 2δ,
then the minimax risk is lower bounded like,

M (Θ, B) ≥ δ

1− B + 1(
1

(2δL)s

)
 ,(3.20)

for any δ > 0.

Proof. The L-Lipschitz permits the lower bound on the covering number
in F-space to be expanded to a lower bound on the maximal packing number
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in Θ-space. This idea is captured precisely in Lemma A.2. A straightforward
analysis reveals that,

log2Kδ ≥
1

2δL
.(3.21)

A careful treatment of this lower bound can be found in Appendix C. The
desired inequality follows immediately from Theorem 3.1.

Example 3.3. Suppose Θ = [0, 1]. Then we may define the class,

F =
{
f : f (x; θ) = θx (1− θ)1−x and x ∈ {0, 1}

}
.(3.22)

In other words, we permit the class of functions F to represent the class
of Bernoulli densities with success probability in the unit interval. Notice
that Θ and F are Lipschitz with L = 1. This can easily be seen as follows,
allowing x ∈ {0, 1},

sup
x

∣∣f (x; θ)− f
(
x; θ′

)∣∣ = sup
x

∣∣∣θx (1− θ)1−x − θ′x
(
1− θ′

)1−x∣∣∣(3.23)

=
∣∣θ − θ′∣∣(3.24)

=
∣∣∣∣θ − θ′∣∣∣∣

1
.(3.25)

A Lipschitz parametrization permits the covering number of the function
space to be converted into a lower bound for the packing number of the
parameter space. Therefore, by Theorem 3.2 it can be seen that,

M ([0, 1] , B) ≥ δ

1− B + 1(
1

(2δ)

)
 ,(3.26)

for any δ > 0. This lower bound is positive whenever B > 0 and 0 < δ <
1

2(B+1) .

4. Main Results of PAC-Learnability. We demonstrate two results
relating to two classical problems in theoretical machine learning. In particu-
lar, we treat the distributed learning of 3-term disjunctive normal forms and
of multi-dimensional half-spaces. We find that these two learning problems
fit naturally within the distributed setting, wherein communication may be
restricted to a particular number of bits. We begin with a well-known result
for conjunctions that will prove to be useful later on.
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Example 4.1. This example is similar to the one in [2]. Denote by Xi ∈
{0, 1}2p a boolean vector and suppose that we form a dataset by Xn =
{Xi}ni=1. Then let C be the set of conjunctions of the measured boolean
random variables on p boolean random variables and their negations. For
instance, with p = 5, the concept c(X) = X1 ∧X3 ∧X5 would represent a
valid conjunction. Let Xn be labeled according to a particular c ∈ C so that
for every i ∈ [n] we obtain yi = c (Xi).

Now form a candidate hypothesis by taking h(X) = X1∧X̄1∧. . .∧Xp∧X̄p,
where X̄ is the logical negation of X. It is known that it is possible to PAC-
learn the out of sample error rate of h (which should be zero) by taking
those Xi with the property that yi = 1 and deleting from h all those logical
literals that are inconsistent with the positive examples of the data. It is
important to note that when h is constructed in this way, logical literals
that are present in c are never removed from the hypothesis so that only
errors of the misdetection type are possible.

One equivalent way to think about the construction of h is simply to take
all of the positive examples of Xn and take their bitwise and down the fea-
tures. Those boolean variables whose entries were positive in all of the pos-
itive training examples constitute the learned conjunction. In a distributed
computing environment, this h can be obtained by having each computer
take the bitwise and of its positive examples and transmit that 2p-vector to
the blackboard. This computation takes exactly 2pΓ-bits of communication.

Definition 4.1. A 3-term conjunctive normal form (CNF) is a conjunc-
tion with at most three logical literals per logical clause [12]. In particular,∧

i

(xi ∨ yi ∨ zi) ,(4.1)

is an example of a conjunctive normal form.

Definition 4.2. A 3-term disjunctive normal form (DNF) is a disjunc-
tion of at most three logical clauses, each of which may consist may consist
of an arbitrary number of logical literals [12]. In particular, if S1, S2, and S3

are three logical clauses, then their DNF is,

S1 ∨ S2 ∨ S3.(4.2)

Proposition 4.1. Every 3-term DNF is representable by a 3-term CNF,
though the converse is not true. Indeed, we obtain,

S1 ∨ S2 ∨ S3 =
∧
x∈S1

∧
y∈S2

∧
z∈S3

(x ∨ y ∨ z) .(4.3)
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Proposition 4.2. Let there be k computers. Let C be the class of 3-
DNFs. Then if c ∈ C and Xn ∈ {0, 1}n×p is labeled according to c, and if
the examples of Xn are equally partitioned across the k computers, then c is
PAC-learnable with,

min

{
k · n · d, k ·

(
d

3

)
· 23

}
(4.4)

bits of communication.

Proof. First observe by Lemma A.5 that the number of 3-CNFs ob-
tainable from 2p boolean random variables (a number which includes the
negations of p of those random variables) is

(
d
3

)
· 8. One approach to PAC-

learning the 3-DNF is to “explode” the 2p boolean random variables into
the

(
p
3

)
· 8 boolean random variables obtained by forming new variables by

taking 3-term disjunctions. This transforms the problem of estimating the
3-DNF directly into an equivalent problem of estimating a large 3-CNF.
This is known to be possible by taking the bitwise logical and of the data.

On the other hand, if n · p is less than the size of the representation
obtained by exploding the boolean random variables into their equivalent 3-
CNF form, each computer may simply transmit their entire dataset, thereby
rendering the problem trivial to solve.

This completes the proof, and shows that n must be O
(
p3
)

in order to
make distributed learning more interesting.

We turn our attention now to the problem of learning multi-dimensional
half-spaces [8]. To explain the concept more clearly, we consider the 1-
dimensional setting: Consider x ∈ R and let c(x) = 1 {x > θ} for some
θ ∈ R. Learning the half-space amounts to constructing an estimator θ̂ of
the threshold parameter which labels x on the basis of data collected from
the system.

Assuming that the collected data, denoted Xn ∈ Rn, where each Xi ∼
U (−a, a), has both positively and negatively labeled examples, it is natural
to take an estimator of θ of the form,

θ̂ =
max {Xi : c (Xi) = 0}+ min {Xi : c (Xi) = 1}

2
.(4.5)

Unfortunately, this estimator can be shown to be generally biased (although
the bias goes to zero as the number of samples goes to infinity). This will
not do for our analysis, so we instead develop a new estimator.
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Lemma 4.1. Supposing that one samples from the 1-dimensional sys-
tem n times. Suppose further that n1 samples are labeled as belonging to the
negative class and n2 samples are labeled positively such that n1 + n2 = n.
We further impose the restriction that we have at least one example from
both the negative and positive classes. Denote by Z1 the maximum of the
negatively labeled examples and Z2 the minimum of positive examples. Fur-
thermore, define Zmax as the maximum of the positive examples and Zmin
as the minimum of the negative examples. Then the estimator,

θ̂ =
Z1 + Z2

2
+
Zmax + Zmin

2
,(4.6)

is unbiased [7].

Proof. The proof of this is easy with the contents of Appendix D in
hand, relating to the extrema of uniform random variables. By direct com-
putation,

E
[
θ̂
]

=
1

2
E [Z1] +

1

2
E [Z2] +

1

2
E [Zmax] +

1

2
E [Zmin](4.7)

= θ +
−θ − a

2 (n1 + 1)
+

a− θ
2 (n2 + 1)

+
θ − n1a

2 (n1 + 1)
+

n2a+ θ

2 (n2 + 1)
(4.8)

= θ.(4.9)

This completes the proof.

Now, we know that the interval (−a, a) may be quantized to accuracy 2a
m

using log2m-bits. From this, we obtain the following proposition.

Proposition 4.3. Half-space learning in Γ dimensions with a data set
split across Γ computers can be learned to accuracy 2aΓ

m using Γ log2m-bits of
communication. Since the estimator, by inspection, has vanishing variance
with n, for appropriately large m, the quantized estimator can have arbitrar-
ily low probability of ε-large deviations from the truth. Hence, the estimator
is probably approximately correct.

5. Conclusion. In this work we have demonstrated some results in an
area at the intersection of statistics and computation. As data becomes
more ubiquitous, and in ever-increasing quantities, it is important to develop
a theory of statistical estimation and machine learning that pays heed to
the computational costs involved. Indeed, with the availability of cluster
computing, it is especially important to obtain a theoretical sense of what
is achievable under communication budgets.
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This work in particular has dealt with two realms of analysis with respect
to statistical learning under communication budgets. We have developed
some general theory, which makes heavy use of Fano’s Inequality, and which
demonstrates in a number of cases a non-trivial lower bound on the number
of bits required to estimate statistical quantities from data. We also consider
the concept of PAC-learnability, and give a more explicit treatment of cer-
tain classical problems from the field of theoretical machine learning. This
analysis yields specific distributed algorithms for solving learning problems
under communication constraints.
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APPENDIX A: TECHNICAL LEMMAS

Lemma A.1. Let θ̂ be an arbitrary estimator of a scalar parameter of
interest θ. We can relate the `2 mean squared error to that of the `1 by the
concavity of the square root function and an application of Jensen’s inequal-
ity,

E
[∣∣∣∣∣∣θ̂ − θ∣∣∣∣∣∣

1

]
= E

[∣∣∣θ̂ − θ∣∣∣](A.1)

= E

[√(
θ̂ − θ

)2
]

(A.2)

≤

√
E
[(
θ̂ − θ

)2
]
,(A.3)

where the final inequality follows from the result that E [|X|] ≤
√
E [X2].



14 JAMES BROFOS

Lemma A.2. Denote the covering number of a set by N (·, ·, ·) and the
maximal packing number M (·, ·, ·). Then covering number and maximal
packing number of a set Θ under an arbitrary pseudo-metric ||·|| satisfy
the relations,

M (2ε,Θ, ||·||) ≤ N (ε,Θ, ||·||) ≤M (ε,Θ, ||·||) ,(A.4)

for all ε > 0.

Lemma A.3. Denote by Yi the message sent by the ith machine. Then if
Yi is a Xi-measurable function, we have by the data processing inequality,

I
(
V : {Yi}Γi=1

)
≤

Γ∑
i=1

I (V : Yi) ≤
Γ∑
i=1

I (Xi : Yi) .(A.5)

where the data Xi is drawn from the distribution P [·; θV ] for V drawn uni-
formly at random from the d-hypercube.

Lemma A.4. For any Θ ⊂ Rd if {θ1, . . . , θKδ} is a maximal packing of
Θ for a norm ||·||, then,

Kδ ≥
Volume (Θ)

Volume ({x ∈ Rd : ||x|| ≤ δ})
.(A.6)

Proof. Clearly,

Θ ⊂
Kδ⋃
i=1

{
x ∈ Rd : ||x− θi|| ≤ δ

}
,(A.7)

since otherwise ∃ θKδ+1 such that {θ1, . . . , θKδ+1} is a packing, contradicting
the assumption that Kδ is the maximal packing number. Thus,

Volume (Θ) ≤ Kδ ·Volume
({
x ∈ Rd : ||x|| ≤ δ

})
.(A.8)

The result follows immediately from simple rearrangement of terms.

Lemma A.5. Let X1, X̄1 . . . , Xd, X̄d be a set of boolean random variables
and their negations. Then the number of 3-CNFs that can be formed from
this set logical literals is,

|3-CNF| =
(
d

3

)
· 23.(A.9)

This can be verified through a simple counting argument.
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APPENDIX B: LARGE DEVIATIONS ARE THE WORST CASE

Denote by θ̃1/n the quantization of θ̂ for which ε = n−1. This represents

the worst-case corruption of θ̂. We will illustrate that,

E
[(
θ̃ − θ

)2
]
≤ E

[(
θ̃1/n − θ

)2
]
.(B.1)

First begin by recalling that the mean squared error of θ̃1/n is 2
n+ 1

n2 . Denote
by ε̄ the mean value of ε. Then we obtain,

E
[(
θ̃ − θ

)2
]

= E
[(
θ̂ + ε− θ − ε̄

)2
]

(B.2)

= E
[(
θ̂ − θ

)2
+ (ε− ε̄)2 + 2

(
θ̂ − θ

)
(ε− ε̄)

]
(B.3)

=
2

n
+ V [ε] + σ

(
θ̂, ε
)

(B.4)

=
2

n
+ V [ε] .(B.5)

Since V [ε] = E
[
ε2
]
− ε̄2 ≤ E

[
ε2
]

it is easy to see that V [ε] ≤ n−2. This
yields the claim.

APPENDIX C: COVERING NUMBER OF L-LIPSCHITZ FUNCTIONS

Consider the set of L-Lipschitz functions mapping [0, 1]→ [0, 1]. Equipped
the supremum norm, we consider the subset of functions that are piecewise
linear on [0, 1]. In particular, we decompose the domain into subintervals,
each of length ε

L . We also partition the codomain into subintervals of length
ε.

Now consider the set of intervals on the domain,

S =

{[
iε

L
,
(i+ 1) ε

L

)
: 0 ≤ i ≤

⌈
L

ε

⌉
− 1

}
.(C.1)

Assume that L ≥ 2ε. For each T ⊂ S, define,

φT (x) =

{
L if x ∈

⋃
t∈T t

0 otherwise
.(C.2)

For every T1 6= T2 then we have,

||φT1 − φT2 ||∞ ≥ L ≥ 2ε.(C.3)
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Therefore, we have that {φT : T ⊂ S} is a collection of 2|S| = 2dL/εe functions
mutually L-apart. Therefore, they are also 2ε-apart. Plainly, we must then
have that the ε-covering number of the space is at least 2dL/εe.

The proof of an analogous lower bound for Lipschitz functions mapping
[0, 1]s → [0, 1] for s ∈ N may be obtained in a similar manner. In particular,
rather than considering 1-dimensional intervals of the domain, one consid-
ers s-dimensional “panels.” There are (dL/εe)s such panels and the result
follows.

APPENDIX D: EXPECTED VALUE OF THE EXTREMES OF
UNIFORM RANDOM VARIABLES

Let X1, . . . , Xn be n i.i.d. random variables distributed uniformly at ran-
dom on (a, b). Define the random variable, Y = mini∈[n] {Xi}. We will com-
pute the expectation of Y . We begin by computing the cumulative density
function of Y . By inspection,

P [Y ≤ y] = 1− P [Y > y](D.1)

= 1− P
[
min
i∈[n]
{Xi} > y

]
(D.2)

= 1−
n∏
i=1

P [Xi > y](D.3)

= 1− P [X1 > y]n(D.4)

= 1−
(
b− y
b− a

)n
(D.5)

From this cumulative density function we obtain the probability density,

P [Y = y] =

(
n

b− a

)(
b− y
b− a

)n
,(D.6)

defined for y ∈ (a, b). Hence the expectation of Y can be computed through
an elementary integral. Indeed,

E [Y ] =

∫ b

a

((
n

b− a

)(
b− y
b− a

)n)
· ydy(D.7)

=
b− na
n+ 1

.(D.8)

If on the other hand we had defined Z = maxi∈[n] {Xi}, we would have

obtained that E [Z] = nb+a
n+1 , as expected [5].
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