
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Undergraduate Theses Theses and Dissertations

5-1-2016

Integrating Bluetooth Low Energy Peripherals with the Amulet Integrating Bluetooth Low Energy Peripherals with the Amulet

Anna J. Knowles
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/senior_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Knowles, Anna J., "Integrating Bluetooth Low Energy Peripherals with the Amulet" (2016). Dartmouth
College Undergraduate Theses. 112.
https://digitalcommons.dartmouth.edu/senior_theses/112

This Thesis (Undergraduate) is brought to you for free and open access by the Theses and Dissertations at
Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth College Undergraduate Theses by an
authorized administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/senior_theses
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/senior_theses?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/senior_theses/112?utm_source=digitalcommons.dartmouth.edu%2Fsenior_theses%2F112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Integrating Bluetooth Low Energy Peripherals
with the Amulet

Anna J. Knowles
Senior Thesis

Advised by Professor David Kotz

Dartmouth Computer Science Technical Report TR2016-807

Abstract

The Amulet is a health monitor, similar in size and shape to a smartwatch but
specifically designed to have a longer battery life and handle data securely. It is
equipped with a Bluetooth Low Energy (BLE) radio in order to receive data from
BLE-enabled sensors and transmit data to smartphones, but the full implementation
of BLE communication on the Amulet is still a work in progress. This thesis
describes architectural changes that improve the Amulet’s ability to receive data
from a variety of BLE-enabled sensors and make it easier for developers to integrate
new BLE-enabled sensors with the Amulet by introducing support for connecting to
multiple sensors at the same time, rewriting the radio code to be more generic, and
exposing BLE functionality to the AmuletOS. We discuss the relevant parts of the
AmuletOS and the BLE protocol as background, describe the current structure of
BLE communications on the Amulet, and document the proposed changes to create
a system for easily integrating new BLE-enabled sensors and handling connections
to multiple sensors simultaneously.

1 Introduction
The Amulet is a wrist-worn health monitor, similar in size and shape to a smartwatch and
equipped with a built-in clock, accelerometer, light sensor, microphone, and temperature
sensor [1]. Amulet was designed in a research collaboration between Dartmouth College
and Clemson University. It is intended for continuous monitoring of personal health
statistics and environmental variables, useful either for research studies or to empower
individuals to monitor their own health while keeping their data secure. The built-in
sensors are insufficient for the range of data that a researcher might want to collect, so
the Amulet is also equipped with a Bluetooth Low Energy (BLE) radio that can connect
it to BLE-enabled sensors and enable it to upload data to a smartphone or server. Amulet
is designed to have low-power demands, a correspondingly long battery life, and to be
extensible by external developers [2]. The architecture and software are designed to
make it easy for developers to write new event-based applications using the existing
API calls, however, hardware is less easily modified. It is therefore very difficult to

1

quickly extend the sensing capabilities of the Amulet by adding new internal sensors.
Luckily, the BLE radio extends the Amulet’s data collection abilities without hardware
modifications, as it can be connected to a variety of BLE-enabled sensors that produce
different types and formats of data simply by making software changes.

The current approach for BLE connections in AmuletOS is hard wired and not
extensible, tailored specifically to a Heart Rate Monitor that provides data as defined
by the BLE standard. It works correctly and efficiently for receiving heart-rate mea-
surements but cannot be easily modified to receive other data. To add a another type
of sensor – one that produces data in a different format and with a different length – a
developer would have to modify code on the two microcontrollers that constitute the
Amulet’s hardware. Much of the code implementing the BLE functionality on the radio
would need to be rewritten, as it is specific to the Heart Rate Monitor functionality and
formatting; however, simply substituting the formatting of the new sensor type would
recreate the problem of non-extensibility in the radio code. The AmuletOS assumes
that the only type of BLE sensor is a heart-rate monitor, and the current core and radio
code require substantial restructuring to allow the Amulet to support two different types
of sensors in the same firmware image. Amulet will be more useful if it is easy to
extend the functionality of the device by integrating new BLE sensors, a given firmware
image can contain the formatting and connection information for more than one type
of sensor, and multiple sensors can be connected at the same time. Easy, reliable BLE
communication is essential to the vision of Amulet as a useful, extensible platform for
future research studies or for wide usage [2].

This thesis describes our redesign of the AmuletOS BLE architecture to support
new and different external sensors and make it easier for future developers to integrate
different types of BLE sensors with AmuletOS.

2 Background
The following section provides a brief overview of the features of the Amulet platform
and the Bluetooth Low Energy protocol that are relevant to the integration of BLE
sensors with the Amulet.

2.1 Amulet
The Amulet is implemented on two microcontrollers: an MSP430 – the application
processor for primary computation – and an nRF51822 M0 microcontroller that contains
and controls the radio [1]. For discussing BLE communications, we find it useful to
think of the Amulet in three layers: the application layer, the core, and the radio as
shown in Figure ??. The applications and core AmuletOS both run on the application
processor, while the radio controls run on the M0. Communication between the MSP430
and the M0 occurs over the SPI! (SPI!) bus.

Applications: Amulet applications are all event driven and expressed as a FSM!
(FSM!) in the QM framework. A typical application transitions between a well-defined
set of states in response to signals generated by the core upon user input (by button
or capacitive touch slider), timer interrupts, or the arrival of data from a sensor. Each

2

Figure 1: The high-level architecture of the Amulet

state may contain some logic or calls to AmuletOS functions written in a restricted
version of C that does not allow the use of pointers and executed upon entry or exit.
The resulting graphical representation of the state machine is translated into standard
C by the compiler. An example blood-pressure application written in QM is shown
in Figure ??. The FSM! structure makes it easier to reason about the correctness of
applications and, as long as the application is written correctly, prevents them from
getting into unrecoverable states.

Applications only interact with the AmuletOS through the API functions defined
in the Amulet.h header file. An XML file is used to explicitly specify the functions
in Amulet.h that each application can use. Applications are assumed to be potentially
malicious and are not given direct control of the radio or access to other energy expensive
functionality to prevent them from running down the battery or monopolizing the radio.
The Amulet compilation process includes static analysis to check that applications
are only using permitted API calls and are not accessing memory outside of their
alloted block, while the QM translator ensures that they have separate namespaces for
all variables and states by appending the application ID to all function and variable
names [?].

To get data from a sensor, applications “subscribe,” that is, they ask to receive an
event from the core whenever data arrives from that sensor. To actually receive the data
an application must call an AmuletOS function to retrieve it, as the restriction on using
pointers means that it cannot be included in the event.

Core: The core manages applications and sensors and handles all of the hardware
and timer interrupts. It serves the same role as an operating system on a fully fledged
computer – hence the name “AmuletOS”. The core keeps track of application subscrip-
tions to sensors in a queue and sends events to subscribed applications when data from

3

Figure 2: An example application to receive and display blood pressure on the Amulet

a sensor arrives or an application timer expires. It responds to requests by applications
to retrieve data, display text on the screen, and write values to the SD card, and runs
applications when events arrive for them or a button is pressed. For applications that get
data from BLE sensors, the core serves as the mediator between the application and the
radio. The core code is written in standard C without restrictions, but most of the code
base only uses statically allocated memory for the sake of speed and to avoid memory
leaks.

Radio: The BLE stack is implemented on the M0 microcontroller, which is respon-
sible for all Bluetooth communication. Communications between the radio board and
the application processor happen over Inter-Process Communication (IPC) on the SPI!
bus, which serves as a physical link between the MSP430 and the M0. The IPC protocol
is custom-defined for the AmuletOS, with a header format and field-values defined in
the core code.

In the first implementation of the AmuletOS and radio drivers, the M0 was the entry
point for all sensor data and application subscriptions were created in the core and then
mirrored on the M0. All subscription data was sent over IPC to achieve this mirroring,
but as sending data over the SPI bus is slow and energy-intensive the current iteration
of the Amulet hardware and architecture only stores subscriptions in the core, on the
MSP430. A recent hardware upgrade introduced a new version of the M0 to the Amulet,
and the full IPC protocol and bidirectional communication between the core and M0
have not yet been re-established since that change, but sending unwrapped data from
the M0 to the core over the SPI bus still works. In this newer version of the hardware
the M0 does not receive all of the internal sensor data and is dedicated to the BLE stack
and the radio controls.

4

2.2 Bluetooth Low Energy
Bluetooth Low Energy, also known as Bluetooth Smart or Bluetooth Version 4.0+, is
a new version of the standard Bluetooth Protocol designed specifically for low-power
devices [?].

BLE is a connection-oriented protocol; the connection established between two
devices. Each device takes one of two distinct roles: A sensor is a peripheral. It is a
data provider and can only sustain one BLE connection at a time. The Amulet plays
the role of a central.1 A BLE central can create and maintain connections to multiple
peripherals at the same time [?].

To create a connection, a central (the Amulet) initiates a scan to discover peripherals
(sensors) in the area, receiving advertising packets from any peripherals that are actively
broadcasting advertisements. The advertisement format is decreed by the BLE standard
GAP! (GAP!) and provides some basic information about the device and its functional-
ity (see Figure ??). Advertisements are limited to 31 bytes of advertising data [?]. If
the initial advertising packet indicates that the peripheral will provide a scan response,
the central can request more information about the peripheral without connecting. This
scan response is in the same format as the advertising packet but is 255 bytes long [?].

After collecting advertisements the central selects a device to connect to, either
by filtering using the information in the advertising packet or by allowing a user to
choose the peripheral from a list. It sends a request to connect using the BD! (BD!)
address of the device, which is a six-byte hex string that is similar to the MAC address
of a networked device.2 BLE supports several methods for exchanging a shared secret
and performing security handshaking at the beginning of a connection, but for devices
without a method of input or complex output (like most sensors) the BLE protocol
specifies a “Just Works” method of authentication, which simply establishes a connection
without a securely shared secret [?]. Once the connection is established, the peripheral
stops sending advertising packets and maintains an exclusive connection with the central.

The BLE standard defines official Generic Attribute Profile (GATT) profiles and
services for various types of data that a BLE-enabled device might provide. The GATT
profile specifies the services that a device offers and thus the functionality that the
device must provide; characteristics within the service, identified by handles, define the
format in which the device delivers data [?]. For example a BLE-enabled blood pressure
monitor would implement the BLE “Blood Pressure Profile,” which encompasses the
BLE “Blood Pressure Service.” This guarantees that the device will send indications
with the blood pressure reading in a certain format, allow reading and writing of
characteristics, and may send additional notifications if the optional intermediate cuff
pressure characteristic is enabled [?]. For most GATT servers, the client can either
read values directly or request a message whenever a value changes by turning on
notifications or indications. Blood-pressure monitors and heart-rate monitors both
operate on the paradigm of the client enabling notifications (or indications) and then

1If it was sending data to a smartphone it would be the peripheral
2We assume all peripherals the Amulet connects to will have public BD! addresses that are unchanging for

the lifetime of the device, or a static random address that is the same for the duration of the connection. The
BLE Generic Access Profile also allows for random device addresses that change during a connection as a
security feature [?].

5

HCI
Packet
type :

 HCI
Event
(0x04)

Event
code:

LE Meta
(0x3e)

Total
length:

Sub
event:

LE Adv.
Report
(0x02)

Num
reports:

 1

Event
type:

Peer
address
type:

Data
length:

ADVERTISING DATA

(up to 31 bytes)

RSSI
(dB)

BD_ADDR (6 bytes)

Bluetooth HCI Event – LE Meta Bluetooth HC1 H4

Length:
2

Type:
Flags

1 byte
of flag
data

Length Type Actual data
(variable bytes,
depends on type)

Figure 3: The format of a BLE advertising packet, derived from observation of traffic in
Sudikoff with Wireshark

waiting for the server to notify (or indicate) the client with the new data. This behavior
is specified in the GATT Service definition. Notifications and indications essentially
perform the same function by allowing the sensor to push data to the client. The
only difference is that the indication requires an explicit acknowledgement from the
Bluetooth stack on the client and only one indication can be sent per connection interval
because of this requirement of explicit acknowledgement [?]. BLE has a low energy
impact because the central and peripheral agree on a connection interval – between
7.5ms and 4s – when they will exchange data, which allows them to sleep in between the
transmissions [?]. Multiple notifications can be sent in the same connection interval (the
nRF51822 controller, for example, can send six data packets per connection interval)
and they require no work on the client side at the application level when receiving [?].
Notifications are acknowledged in the link layer, so there should not be any data loss [?].

3 Related work
The Amulet group has published several papers on the device to date. Sorber et. al.
propose the Amullet and describe the goals of the project – security, privacy, and
usuability – in a 2012 paper titled “An Amulet for Trustworth Wearable mHealth” [2].
They also state the goal of “allowing App developers to focus on the health-related logic
and data processing while the Amulet system automates many security and networking
tasks” [2], which informs the “easily extensible” goal of our current project. A paper
written by Molina-Markham et. al. in 2014 – “Amulet: A secure architecture for
mHealth applications for low-power wearable devices” – more explicitly describes the
architecture and architectural security features of the device and expands on the goal
of customisability and the ability to install third party applications [?]. This paper
introduces the two-tiered architecture of the Amulet and describes the advantages of
having applications as finite-state machines, and the mechanism of application isolation
by limiting the features of C and static analysis at compile time [?]. Neither of these
papers has addressed the Bluetooth communications of the Amulet in any depth.

6

In a 2016 paper titled “Beetle: Flexible Communication for Bluetooth Low Energy,”
Levy et. al. describe “Beetle,” a “hardware interface that virtualizes peripherals at the
application layer” and allows multiple applications on the central to receive data from
the same peripheral, implements access control for operations and values on the periph-
eral, and enables peripheral to peripheral communication through a gateway [?]. The
paper provides useful background information on BLE and the way existing operating
systems present BLE to applications. They authors present example implementations on
Android and Linux that insert a “Beetle” layer in between the BLE controls and existing
applications to intercept the BLE packets and expose only the desired functionality to
the application by presenting it with a virtual peripheral. The current implementation
of AmuletOS and the radio, which hide the internals of the BLE connection to the
application and allow two applications to receive data from the same sensor, is not
entirely unlike this approach. Although the AmuletOS is an embedded operating system
and the Beetle layer is designed for a full-fledged OS, the ideas about access control and
sharing sensors presented in this paper are highly relevant to the problem of integrating
BLE sensors with AmuletOS and suggest interesting directions for future development.

To explore BLE transmissions and structure we used a model UA-651 BLE Blood
Pressure Monitor manufactured by A&D Medical [?]. A&D engineering provided an
example Android application for connecting to their Blood Pressure Monitor in their
Github repository [?] that we referenced for hints on how to connect to the device, and
provided an example of the Android callback structure for handling BLE connections.
The Linux utitility Gatttool, which is included in the bluez package, was also invaluable
in discovering device characteristics and how the BLE protocol worked. The simple set
of commands that it exposes to the user at the command line served as the inspiration
for the collection of BLE commands that are elevated to the AmuletOS in the proposed
implementation.

4 Current Implementation
The current version of Amulet is capable of BLE communication but the implementa-
tion is limited and inflexible: Amulet BLE only works with heart-rate monitors that
implement the BLE-defined Heart Rate Profile and the radio code is inextricably bound
to the sensor type and data formatting of the sensor.

Continuing to add sensors in the same way would have required re-writing code for
the radio every time a new data format was introduced and making changes throughout
the AmuletOS core code, requiring a developer to fully understand both parts of the
system and reprogram both microcontrollers every time they wanted to add a new sensor.
Furthermore, the current case design of the Amulet intentionally makes it difficult to
access the programming port of the M0.

In the current implementation of BLE and the radio (Figure ??), when an application
wants to get data from a heart-rate monitor, it uses an API call to “subscribe” to the
sensor. The core stores that subscription in a queue and turns on the radio if it is not
already on. On the old hardware the core then bundled the subscription information in an
IPC header and sent it to the radio (M0), which kept a mirrored copy of the subscriptions.
The current version does not mirror subscriptions on the M0 and turning on the radio

7

immediately starts a scan for compatible sensors. The scan results are filtered on
the M0 until a peripheral that implements the Bluetooth GATT Heart Rate Profile is
discovered, at which point the radio attempts a connection. The radio automatically
enables notifications from the GATT server on the peripheral by writing to a specific
characteristic. When a notification arrives, the radio extracts the data and sends it to the
core on the SPI! bus. With the old hardware, the radio wrapped it in the IPC header, but
the full IPC protocol has not been reimplemented. The core receives the data, then steps
through the subscription queue and send a “data ready” event to any application that
had registered a subscription to the Heart Rate Monitor. The application then calls a
getHeartrateData function to get the sensor data.

In the original model (with subscriptions mirrored on the M0) when an application
unsubscribed from a sensor, the core simply marked its copy of the subscription as
disabled in order to avoid sending an expensive IPC message. Subscriptions were
actually deleted when they “expired,” a functionality that has since been deprecated.
The current implementation does not actually delete the subscription when an appliction
unsubscribes, even though it is safe to do so. With the current applications the Amulet
is not processing enough subscribe and unsubscribe events to be in any danger of
overflowing the subscription queue, so this method is functional if not scaleable.

In the current implementation, the only control that the core has over the radio is
the ability to turn it on or off, and turning on the radio immediately initiates a scan for
heart-rate monitors. The only data that flows back from the radio to the AmuletOS is
the heart-rate readings, sent over the SPI bus without headers or other metadata. The
radio only connects to heart rate monitors that implement the GATT Heart Rate Service.

5 Proposed Model
Our proposed redesign of BLE integration with the AmuletOS is not a radical re-
architecting of the flow of control and data through the system, but a careful restructruc-
turing of the existing BLE functionality for better extensibility. The most significant
change is that the sensor-type-specific code is removed from the M0 and AmuletOS is
given finer control over the BLE radio and more error signals are added for better error
handling in applications. The proposed flow of data and commands are shown in Fig-
ure ??. The primary differences from Figure ?? are the changes in commands and infor-
mation sent from the core to the M0 when initiating a connection, the generic radio code,
the look-up of a handler to deal with received data, and the generic AmuletGetData
function. The generic radio means that future developers do not need to do anything
with the radio code and the formatting of the data and sensor-specific connection values
can be defined in the AmuletOS. The proposed model also enables the AmuletOS to
keep track of subscriptions to different instances of the same type of BLE sensor and
allows an application to own subscriptions to multiple BLE sensors.

There are two main assumptions made in the conception and description of this
model: 1) Inter-Processor Communication will be re-instated with a header that includes
certain fields and flags, and 2) the radio code can be modified to perform the desired
operations in a generic manner that works with most sensors. The first is an implemen-
tation and debugging task, but the second is less certain, as the manufacturers of BLE

8

1. Advertising data

2. Connect

3. Connect success

4. Enable Notifications

5. Write success

 turn on radio

AmuletOS

M0 (radio)

Application Layer
App subscribes to BLE

sensor
App gets event, retrieves HR

data

 Core adds subscription to
subscription queue, turns on

the radio if needed

Core receives the data, puts
it in a known location

M0 knows the notification
format, and unpacks the data,

wraps with IPC header and
sends

AmuletSubscribe()

Notification

Notification

BLE sensor
(Heart-rate)

DATA_EVT AmuletGetHR()

Extracted data,
no headers

M0
immediately scans for and tries

to connect to a BLE sensor (a
HRM)

Figure 4: The current data flow, and interaction with the BLE heart rate monitor. Note
that the core can only turn on the radio, and data is sent over IPC without headers. The
function for retrieving data is heart-rate specific

1. turn on
radio

2. scan

1. Advertising data

2. Connect

3. Connect success

4. Enable Notifications

5. Write
value to
handle

4. Connect
by address

5. Write success

3. adv
info

App subscribes to BLE
sensor

App gets event, retrieves HR
data

AmuletOS
 Core adds subscription to

subscription queue, turns on the
radio if needed, initiates a scan

Core receives data, calls a
sensor specific function to

extract it

M0 (radio)
M0 receives data and passes it

up

M0 performs generic commands
using parameters and data sent by

the core

Notification

Notification

BLE
ENABLED
SENSOR

Notifications
wrapped in IPC

DATA_EVT AmuletGetData() AmuletSubscribe()

Application Layer

Figure 5: The new interaction with a BLE sensor, with the core playing a more active
role. Note the increased communication between the AmuletOS and the radio, especially
when establishing a connection.

9

sensors all seem to interpret the standard differently and the interoperability of a central
and a peripheral is not guaranteed out of the box.

5.1 At the application level
The way an application gets data from a BLE-enabled sensor does not change dramati-
cally in the proposed design. An application still subscribes, but specifies the type of
BLE sensor that it is requesting data from as an argument. To accommodate multiple
sensors, if the application subscribes to more than one BLE sensor it must also specify
a unique integer identifier for each of them in the range of 0 to MAX_SENSORS, which
is a constant value that must be less than 255. If it has only one subscription the identi-
fier must default 0. This identifier is passed to the subscription function provided by
the AmuletOS and is stored by the core, giving the application and the core a shared
reference for that individual sensor.

Applications should assume that all of their requests to the AmuletOS succeed unless
they explicitly receive a failure event.3 Thus, after subscribing, an application should
proceed directly to state of waiting for data. The proposed changes define several new
events to inform the application of BLE scan or connection failures, as many connection
or scanning problems – specifically, the desired sensor not being present, in range, or
advertising – can be fixed by simple user intervention (turning the device on).

To retrieve data, the application calls a generic function, passing in sufficient infor-
mation for the core to identify the subscription and an array for the core to fill with data.
When applications are translated from a graphical finite-state machine in QM into C,
arrays are replaced by structs that contain a pointer to values and the length of the array
to prevent out-of-bounds errors and to get around the “no pointers” restriction [?]. The
core will only return as much data as will fit in the array. Both the application and the
core should know the length and type of the expected data from a given sensor, but the
core determines how much data is actually returned and will not overflow the given
array, preventing buffer overflow errors.

5.2 At the core level
The proposed changes expose the major actions of establishing a BLE connection
and sending and receiving data to the core, allowing the AmuletOS to ask the radio
to perform the essential functions needed to connect to a BLE sensor and request
notifictions or indications from it. To enact the changes, the core stores more identifiers
and associations for each connection than it does in the current implementation, as each
application can have multiple sensors, and those “multiple sensors” could be separate
subscriptions to different instances of the same type of sensor.

5.2.1 Subscriptions and connecting to a sensor

The logic of sensor subscription in the current model assumes that any application that
subscribes to a heart-rate monitor will receive the readings from the single heart-rate

3In the AmuletOS, these events are defined in an enum. All of them are appended with SIG

10

typedef struct SubscriptionQueue Subscription;

struct SubscriptionQueue {
uint16_t subscriptionID; // internal to core
uint8_t principal; // the app that is subscribed
uint8_t service; // e.g. timer, BLE
uint8_t sensorType; // added for BLE
uint8_t appSensorID; // core and app share
uint8_t bdAddr[BD_ADDR_BYTES]; // 6 bytes - core and radio share
bool disabled;
bool continuous; // default true
uint8_t * data; // pointer to data for sensor
Subscription * next;

};

Figure 6: The struct used to contain the subscription information in the AmuletOS

monitor to which the Amulet is connected, if a connection can be made. As Levy et. al.
pointed out this implementation is convenient for allowing one application to display
the heart rate and another to store it [?], for example, but does not fulfill the hypothetical
case of using the Amulet to collect data from two accelerometers, one attached to each
of a wearer’s ankles, to measure gait. In the two-accelerometer example, having the
subscription logic default to getting data from an existing sensor would result in data
being gathered from only one accelerometer, defeating the point of the experiment. Thus
the proposed implementation requires the application to specify a unique byte identifier
for each sensor it wants to subscribe to and send that value to the AmuletOS when asking
for a subscription. The AmuletOS stores it as appSensorID in the subscription struct,
shown in Figure ??, and it is used by AmuletOS and the application to ensure that the
two layers are referring to the same sensor when exchanging requests and events. The
subscription logic defaults to assuming that when an application asks for a subscription
it wants a new, individual sensor. This is more like the implementation of BLE on
existing operating systems like Android and Linux, which limit applications so that only
one can receive data from a given BLE connection [?], but allows for multiple instances
of the same sensor.

When an application subscribes to a sensor, the AmuletOS creates a new entry in
the subscription queue, leaving the BD! address field zeroed out. It then asks the M0 to
initiate a scan by sending an IPC message to the radio with any scanning parameters that
are specific to the sensor type. The core only allows one scan to run at a time and sends
a scan failure event to any application that attempts to request a scan while another scan
is in progress. It is the application’s responsibility to handle the event correctly and
either retry or display a message to the user. The radio sends found advertisements back
over IPC to the core, which passes them to the sensor-type-specific scan filter function
that parses the advertisement and returns a boolean. When an advertisement from the
desired type of device is found, the core adds that BD address to the subscription entry.
We chose the BD! address as shared reference for the radio and the core to identify a
connection to a sensor because it is (most likely) unique and can be used by the core to
re-initiate a connection in the future, potentially without scanning again.

11

After finding a desirable advertisement, the core immediately sends the radio a
request to connect by BD! address, followed by a request to write the necessary value to
turn on notifications or indications. The core assumes that the commands it issues to
the radio succeed unless it receives an error message from the M0. Assuming success
instead of requiring explicit notification of success avoids unnecessary energy and
time-intensive IPC communication.

5.2.2 Receiving data from a sensor

When the core receives notification or indication data from the radio over IPC, it passes
it to a sensor-type-specific function to be unpacked. For example, for a blood-pressure
sensor, the unpacking function extracts the data from the format specified by the GATT
Blood Pressure Measurement Characteristic and writes it to a statically allocated buffer
that serves as a section of FIFO memory for data. It returns a pointer to the first byte
of the data, which the core places in the subscription that that sensor is associated with
before notifying the subscribed application that data is ready for retrieval.

The core does not actually guarantee that the data will still be there when the
application attempts to retrieve it: if the application is slow and the core has received
another piece of data from the same sensor, the pointer will point to the first byte of the
newest data. This is an intentional design choice so that an application only retrieves
the most current value from a sensor. If the application is particularly slow in asking to
retrieve the data and the core is receiving large quantities of data from other sensors, it
is also possible that the data could be overwritten with data from some other sensor if
the statically allocated buffer is not large enough. We judged this to be a reasonable risk
to take, as the Amulet is meant to be a fast, responsive, real-time system. We chose to
use the FIFO data queue instead of simply allocating a static data buffer for each type
of sensor because we wanted to allow for the possibility of the AmuletOS receiving
data from multiple sensors of the same type at almost the same time and be able to
serve the subscribing applications correct data rather than a duplicated reading from one
sensor. We chose a simple FIFO memory model with a risk of incorrect data instead of
using dynamic memory allocation to always provide the correct data because it can be
managed with a few lines of code, static allocation of memory at compile time is faster
than dynamic execution during runtime, and there is no risk of memory leaks or need to
free data before it gets overwritten.

When an application indicates it no longer wishes to receive data by unsubscribing
from a sensor, the subscription entry can safely be deleted.

5.2.3 Defining sensor types

Another key component of the proposed changes is the definition of “sensor classes”
in the core. C is not an object-oriented language but solving the problem of defining a
sensor type with functions and variables would be trivial in an object oriented language
with polymorphism. As it is, we think of adding the information for a new sensor as
implementing an interface (just like Java): the developer must create new .c and .h files,
define several constants, and write three functions, each of which must have a specific
signature. Because we are working in C, however, all functions and variables must have

12

typedef bool (* filter_func) (ble_adv_data_t * scan_result);
typedef uint8_t * (* data_func) (ble_notification_t * data,

uint8_t datalen);

typedef struct ble_sensor_info {
uint8_t type; //for core and application use
uint8_t scan_seconds; // parameter for scan
filter_func scan_result_filter;
uint16_t byte_data_len; // length of data to pass up to app, in bytes
uint8_t handle_to_set; // handle to write to turn on notifications/

indications
uint8_t value_to_write; // notifications or indications
data_func data_unpacker; // data handler

} ble_sensor_info_t;

Figure 7: The struct that contains the important information about a “sensor class”, and
the typedefs of the function pointers, which specify the required function signatures.

unique names. We suggest that future developers adhere to the convention of appending
all of the function names with the internal sensor type identifier. Two of the functions
are the previously-mentioned “unpacking” function and the scan-result filter. The third
simply collects all of the constants and function pointers to the other two together in the
struct shown in Figure ??, which is our rudimentary equivalent of a (Java) class. The
sensor-adder must call this third function from the buildSensorTable function
that is run when the core first tries to reference the sensor table and constructs a table
of sensor-entries that the core can easily reference and use to look up constants and
function pointers.

A given sensor type can be included in a firmware image for the Amulet by editing
the includes in the ble_core_sensors.h file.

5.3 In the radio code
In the proposed redesign, the radio is fully generic and should require no changes to add
a new sensor. It should perform the following behaviors, if possible, when requested to
do so by the core, using the parameters that the core sends.

• Scan for advertisements and send responses to the core. Send an error to the core
if the scan times out without the core sending a request to connect.

• Connect by BD! address. Send an error to the core if it fails.

• Write a value to a characteristic handle.

• Read a value from a characteristic handle.

• Disconnect from a sensor.

A peripheral-initiated disconnect or the arrival of notification or indication data
should also be recognized and sent to the core in the appropriate format and the radio

13

should handle the security handshaking and connection parameter negotiation without
input from the core.

The write and read are not expected to report error values (yet) because the developer
adding the sensor should have tested the handles, values, and permissions on another
system for setting notifications and indications, and being able to read or write other
values is not crucial for the correct functioning of a sensor in the style of a heart-rate or
blood-pressure monitor.

The radio must also keep a table associating the initial BD! address with the internal
connection identifier it uses, so that it can include the BD! address in any related IPC
message that it sends to the core after establishing a connection, as the notification or
indication data does not usually include the BD! address of the source.

5.4 Continuing the Amulet’s goals of energy and security
The proposed implementation will likely consume more power than the current one, as
it requires more energy-intensive IPC communications. We believe that the increased
utility of the Amulet will make it a worthwhile trade-off, but it would be useful to
quantify the decrease in battery life to evaluate how useful shortenting the scan interval
or implementing scan filtering on the radio would be. In the proposed design the
AmuletOS uses as few IPC transmissions as possible by assuming that all commands
sent to the M0 receive unless it is specifically told otherwise.

The proposed changes to the AmuletOS APIs available to applications and to the
subscription process maintain the security tenet of restricting applications’ access to
important or potentially harmful operations [?]. The subscription logic passes a failure
back up to the application if the scan fails instead of retrying endlessly, and further
logic could be implemented to prevent an application from retrying too frequently and
monopolizing resources. The core’s position in between the applications and the radio,
and by extension the connected sensors, allows it to control the applications’ access to
data and services from the sensors. The proposed changes do not currently allow an
application to write a value to a handle, or to read one. This limitation of functionality
provides security. The AmuletOS could potentially implement more rules for access
control on a per sensor-type or per application basis, moving towards the fine grained
access control described in the paper on the “Beetle” system [?].

6 Limitations
The main limitation of the proposed changes is that the generic BLE radio has not yet
been written and IPC has not been reimplemented on the new hardware. We developed
proof-of-concept code for the proposed changes and confirmed that it works down to
the IPC level: it formats messages and queues them up to be sent but the functionality to
send them has not been restored. We tested the changes in receiving data, which start in
the ProcessIPC function by inserting fake data, but we cannot be certain the design
works until the radio implementation can be tested.

The memory available on the Amulet limits the number of sensor type definitions
that can be included in a given firmware image. The current prototype has 128K FRAM

14

(which can be used for both ROM and RAM), and the proof-of-concept code takes about
. The speed of the SPI! bus might also limit the amount of data that that the Amulet
could receive and the number of commands it could issue, which would in turn limit the
number of sensors that the Amulet could be connected to at any one time. There does
not appear to be a specific limit set by the BLE standard on the number of peripherals
that can be connected to a central. The limit is probably dependent on the specific
implementation of the BLE stack. The current heart-rate receiving central on the radio
can connect with three separate heart-rate sensors and receive data from all of them.

The AmuletOS does not guarantee that the the application will get the correct
data: there is a chance that if the application takes too long to retrieve the data or the
AmuletOS is overwhelmed with an influx of data, the application may get an incorrect
reading when it attempts to retrieve data

The subscription process does not currently allow for the case where an application
does not need to connect to a new sensor but would be satisfied by collecting data from
an already connected sensor of the appropriate type. The value of allowing two different
applications to receive data from the same sensor is emphasized in the paper on “Beetle,”
in which the authors give the example of having one application display heart rate and
another log it [?].

The current set of values that a developer needs to specify to add a sensor are based
on assumptions about the way the sensor provides data and limit reusability of the sensor
definitions. The proposed changes require the developer to know the value of the handle
to write to enable notifications or indications. The handle can be found by reading the
CCCD! (CCCD!) on the device. Hardcoding the handle value works for connecting
to peripherals of the same model from the same manufacturer, but means that a sensor
from a different manufacturer or a different model that implements the same GATT
server might need a different specification file to connect to it, even though the function
for unpacking data might be the same.

The “sensor class” definition of the proposed changes only supports either notifi-
cations or indications for a sensor, not both. For example, a device implementing the
GATT Blood Pressure profile may provide optional notifications with intermediate cuff
pressure and must provide indications with the final reading. In the proposed design
(as in the original BLE structure), the Amulet can only receive the notifications or the
indications, even if the peripheral provides both. It would be simple to add another
two fields to the sensor definition entry so that a sensor could send the Amulet both
notifications and indications, but allowing a variable upper bound on the number of
notifications and indications would be trickier.

The proposed changes, and the proof-of-concept code, send a “data is here” event to
every subscribed application every time a notification or indication is received from the
radio. For some sensors, however, it might be more appropriate for the AmuletOS to
average the data and only notify the application every nth time data was received. This
could be achieved by pushing the responsibility for notifiying the application into the
data handler function specified in the sensor type definition, which would mean that
sensors could have completely different patterns for sending data events to applications
depending on their type.

15

7 Evaluation
How do we measure the success of these proposed changes? The first question is
whether the new code works to get data from a BLE-enabled sensor to the Amulet,
and whether it does so reliably? In other words, does it provide basic functionality by
scanning, filtering, connecting, enabling notifications or indications, receiving the data,
and then disconnecting without entering an unrecoverable state?

We unit tested functions and data structures during development to check for correct
atomic behavior, but full integration tests with an actual BLE sensor are not yet possible,
as the reinstatement of IPC and implementation of generic central functionality on
the M0 has not been completed. As a substitute, we tested the flow of errors and
data through the AmuletOS up to the applications by manufacturing hand-written IPC
messages on the MSP430 in the onIdle loop, which runs whenever the AmuletOS
is not handling interupts. We passed the test data into the ProcessIPC function,
which is the expected entry point for an IPC message into the logic of the core, and
successfully showed that with correctly formatted data and IPC headers the example
blood-pressure application and the error handling works as it is supposed to: the errors
and data are passed up to the correct application.

Future full integration testing should:

• test repeated connecting, disconnecting, and reconnecting to the same device

• test connecting to two different sensors, with two different applications receiving
data (i.e. have a heart-rate sensor connected and collecting data, then connect to
and collect data from a blood-pressure sensor as well).

• test one application subscribing to two sensors, which would require writing a
new application.

• test error behaviors by scanning in an area without a device of the desired type.

Performance testing to evaluate the following would also be valuable:

• test sensors that send at a high data rate with a short connection interval to see
how fast the system responds and measure throughput.

• measure latency from sensor to application. We expect the IPC transmissions
over the SPI bus and the actual BLE transmission to be the slow portions of the
system

• measure impact of exposing BLE commands to the core on battery life by compar-
ing the current implementation (sensor specific) with the proposed implementation
(generic)

• experiment with the effects of constants and the sizes of arrays and queues on
performance, and fine tune the values and queue and array sizes.

The more difficult thing to measure is how “easy” it is for a developer to add a new
BLE sensor. In the proposed model, the developer only has to make changes in the

16

AmuletOS rather than in the radio code, which we consider significantly easier: the
radio deals with the specific parameters of the BLE connection and is tricky to program,
while code on the AmuletOS is at a higher level of abstraction and not as finicky. To
add a new type of sensor with a different data format in the proposed model, a developer
must create a new pair of .c and .h files, write three functions that conform to pre-defined
signatures, define four constants, and edit an existing pair of .c and .h files to inform the
AmuletOS of the existence of the sensor by calling one of the functions that they have
written and including their new files.

They must know whether their sensor provides notifications or indications, which
characteristic handle to write to to turn those on, and the format of the data that is
delivered in a notification or indication. Of the three functions to write, one simply
collects all of the values and other functions and packages them into a struct. The second
handles notification or indication data, and in most cases will simply be responsible
for extracting data and copying it into the FIFO memory buffer. The third is likely to
be the most complicated, as it must parse advertisement packets to determine whether
the peripheral that sent the advertisement is of the desired type. Advertisments are in a
standard format that makes parsing fairly simple (see Figure ??), so even this should not
be too difficult, especially if the developer has been able to observe the byte composition
of an advertisement from their device by using a sniffing tool such as Wireshark.

One way to determine the ease of adding a new sensor would be getting a developer
to actually add a new sensor, evaluating how long it took them, and interviewing them
about their experience of the process. It would be interesting to do a study with at least
three to five new developers, and have them all work on adding a sensor that had already
been successfully added and tested. The developers would be provided with a copy of
the AmuletOS (without the target sensor added), and documentation explaining how to
do the task. They would be set free to attempt it for a set amount of time, then evaluated
on how close they got to completeing the addition and interviewed afterwards on their
experience. In selecting the potential developers for such an evaluation, we would
need to consider the target writer of Amulet applications and who is likely desiring to
add sensors. At a minimum, all subjects would need to be proficient in C. A simpler
approach would be to have someone new to the Amulet group add a sensor that has not
yet been added and tested and perform the same interview process with them.

8 Future Improvements and Projects
One related future project would be the implementation of simplistic pairing between
the Amulet and a sensor. The Nordic Soft Device that provides much of the BLE radio
functionality has its own form of pairing, but pairing implemented in the AmuletOS
would be easier to use. It would be convenient to have the Amulet remember the BD!
address of the device that it has previously connected to, to ensure that the Amulet
reaches the heart-rate monitor or blood-pressure sensor its user actually wearing. BLE
devices only advertise when they are not connected, so the chances of inadvertently
connecting to another person’s device are slim in real-world use, but as the Amulet is
more likely to be used in research studies and may have multiple people connecting
and reconnecting to sensors in the same room, having a pairing mechanism would be

17

useful. A primitive form of pairing could be implemented by editing the subscribing
and unsubscribing logic. Instead of removing subscription entries when either the
application or the peripheral initiates a disconnection, the AmuletOS could simply mark
the entry as disabled, storing the pairing of BD! address, application, and sensor type.
The subscription function signature could be changed to include a “try to reconnect”
flag. When the application asked for a subscription again, if the core found a disabled
subscription entry for that application with the appropriate sensor type it could simply
try to connect to the stored BD! address directly, skipping the energy intensive scanning
step and the IPC transfers required to send scan results to the core. If it did not find a
stored subscription, it could create a new one and follow the usual scanning procedure.
As mentioned in the limitations, the subscription functionality could also be improved
by adding an option for an application to receive data from an already connected sensor,
if available, rather than looking for a new individual sensor every time.

Another related project would be the development of a pairing app that would allow
a user to select the device to connect to from a list returned by the scan, rather than
letting the AmuletOS connect to the first sensor that matches the scan filter requirements.
This is challenging because of the limited display space and might require as-yet-
unimplemented inter-app communication.

The AmuletOS iterates through the subscription queue frequently to look for sub-
scriptions that match certain parameters. As the Amulet is loaded with more applications
and connected to more sensors, it might be worth replacing the queue with another data
structure that allows for faster access.

The new design filters scan results in the core, which requires all advertising packets
the radio receives to be sent to AmuletOS over IPC. An energy efficient modification
would send some filter parameters to the radio with the scan instruction so that the M0
could do some initial filtering or exclude certain types from the scan. Not only would
this save on IPC communications, but the MSP430 could be put in a low power idle
state while the radio processed the scan data, only waking up when the results were sent.

Another useful feature to implement would be dynamic discovery of the handle
to write to turn on notifications or indications. We would also like to implement
automatic inclusion the the sensor type source code in a firmware image depending on
the dependencies of the application. We could also implement more access control on a
per sensor type basis, or limit the access of certain applications to some APIs [?]

9 Summary
This thesis describes the proposed redesign of the AmuletOS to integrate multiple types
of Bluetooth Low Energy Sensors with the AmuletOS. The key changes proposed are
rewriting the radio to be more generic and permitting the AmuletOS finer control of
the BLE states. The proposed redesign tracks which application is connected to which
sensor and ensures that the application gets data from the correct sensor even if there
are multiple sensors of the same type connected and sending data simultaneously.

We discuss the limitations of the proposed changes, outline a plan for more in-depth
evaluation once the generic radio is implemented, and describe some ideas for related
future work.

18

Acknowledgements
Thank you to Professor David Kotz for advising my thesis, and to Professor Zhou and
Professor Campbell for serving on the committee for my presentation and providing
valuable feedback.

Thanks to Tianlong Yun, Ron Peterson and Josiah Hester for answering lots of my
questions, and to everyone involved in the Amulet project for being very welcoming
and helpful.

This research results from a research program at the Institute for Security, Technol-
ogy, and Society at Dartmouth College, supported by the National Science Foundation
under award number CNS-1329686. The views and conclusions contained in this docu-
ment are those of the authors and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the sponsors.

References
[1] Andres Molina-Markham, Ronald A. Peterson, Joseph Skinner, Ryan J. Halter,

Jacob Sorber, and David Kotz. Poster: Enabling computational jewelry for mhealth
applications. In Proceedings of the 12th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’14, pages 374–375, New York, NY,
USA, 2014. ACM.

[2] Jacob Sorber, Minho Shin, Ronald Peterson, Cory Cornelius, Shrirang Mare, Aarathi
Prasad, Zachary Marois, Emma Smithayer, and David Kotz. An Amulet for trustwor-
thy wearable mHealth. In Workshop on Mobile Computing Systems and Applications
(HotMobile), pages 7:1–7:6, February 2012.

19

	Integrating Bluetooth Low Energy Peripherals with the Amulet
	Recommended Citation

	1 Introduction
	2 Background
	2.1 Amulet
	2.2 Bluetooth Low Energy

	3 Related work
	4 Previous Implementation
	5 New Model
	6 Limitations
	7 Evaluation
	8 Future
	9 Discussion
	10 Conclusion

