Dartmouth College

Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

2-28-1997

On the Power of Multi-Objects

Prasad Jayanti
Dartmouth College

Sanjay Khanna
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

O‘ Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation
Jayanti, Prasad and Khanna, Sanjay, "On the Power of Multi-Objects" (1997). Computer Science Technical
Report PCS-TR97-311. https://digitalcommons.dartmouth.edu/cs_tr/150

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/150?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

On the Power of Multi-Objects*

Prasad Jayanti
Sanjay Khanna

Technical Report PCS-TR97-311
3/97

*Work supported by NSF grant CCR-9410421
and Dartmouth College Startup Grant

On the Power of Multi-Objects*

Prasad Jayantif Sanjay Khannat

Dartmouth College Computer Science
Technical Report Number PCS-TR97-311

February 28, 1997

Abstract

In the standard “single-object” model of shared-memory computing, it is assumed
that a process accesses at most one shared object in each of its steps. A (more powerful)
variant Is the “multi-object” model in which each process may access multiple shared
objects atomically in each of its steps. In this paper, we present results that relate the
synchronization power of a type in the multi-object model to its synchronization power
in the single-object model.

Although the types fetch&add and swap have the same synchronization power in
the single-object model, Afek, Merrit, and Taubenfeld showed that their synchroniza-
tion powers differ in the multi-object model [AMT96]. We prove that this divergence
phenomenon is exhibited only by types at levels 1 and 2; all higher level types have the
same unbounded synchronization power in the multi-object model.

This paper also identifies all possible relationships between a type’s synchronization
power in the single-object model and its synchronization power in the multi-object
model.

1 Introduction

A shared-memory system consists of asynchronous processes and typed shared objects. An
execution of such a system is an interleaving of the steps of individual processes. In the
commonly studied model, it is assumed that a process accesses at most one shared object
in each of its steps. We call this the single-object model. A variant (and a more powerful)
model is the multi-object model in which each process may access multiple shared objects
atomically in each of its steps. Specifically, each step of a process P corresponds to the
following sequence of actions, all of which occur together atomically: (i) based on its present
state, P determines the number m of objects to access, the identities O1, ..., O, of (distinct)

*Work supported by NSF grant CCR-9410421, and Dartmouth College Startup grant.
Y6211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH 03755
16211 Sudikoff Lab for Computer Science, Dartmouth College, Hanover, NH 03755

objects to access, and the operations opery,...,oper,, to apply to these objects, (i) for all
1 < i < m, P applies oper; on O; and receives O;’s response res;, and (iii) P makes a
transition to a new state, where the new state depends on the responses resy,...,res,, and
the previous state of P. This model was studied earlier by Herlihy [Her91] and by Merritt
and Taubenfeld [MT94] in the context of shared-memories that consisted only of registers,
and was recently explored further by Afek, Merritt, and Taubenfeld [AMT96]. In this paper,
we present results that relate the synchronization power of a type in the multi-object model
to its synchronization power in the single-object model.

Let T™ denote a shared-memory consisting of infinitely many objects of type T such
that in each of its steps a process may access any of at most m objects atomically. Let T*
denote a shared-memory consisting of infinitely many objects of type 7" such that in each
of its steps a process may access any finite number of objects atomically. Since consensus
is universal [Her91], the extent to which consensus is implementable in a shared-memory
is a reasonable measure of the synchronization power of that shared-memory. Accordingly,
as in [AMT96], we define Con(T™) as the maximum number of processes for which a
consensus object can be implemented in shared-memory 7™ if there is no such maximum,
Con(T™) = co. Con(T*) is similarly defined. Notice that Con(T"), which we will simply
write as Con(T'), denotes the synchronization power of 7" in the single-object model.

Afek, Merrit, and Taubenfeld observed the following “divergence phenomenon” as
we shift from the single-object model to the multi-object model [AMT96]. Although
the types fetch&add and swap have the same synchronization power in the single-object
model (Con(fetch&add) = Con(swap)=2 [Her91}), their synchronization powers differ in
the multi-object model: Con(fetch&add") is still 2 while Con(swap*) is co. Thus, the
multi-object model enhances the power of swap, but not of fetch&add, despite the fact
that the two types have the same power in the single-object model. The same diver-
gence phenomenon also occurs for certain types at level 1.1 Specifically, consider the type
trivial which supports a single operation that always returns the same response. Clearly
Con(trivial) = 1. It is well-known that Con(register) is also 1 [CIL94, DDS87, LAS87,
Her91]. Yet, Con(trivial*) = 1 and Con(register*) = oo [Her91].

The main result of this paper is that the divergence phenomenon described above is
exhibited only by types at levels 1 and 2. Specifically, we prove that if Con(T") > 3, then
Con(T*) = o0. In other words, the synchronization power of all types at levels 3 or higher
is enhanced to the fullest degree by the multi-object model. Thus, it is not a coincidence
that the types which appeared above in the examples of the divergence phenomenon —
fetch&add, swap, trivial, and register — are at levels 1 or 2.

We also present the following results for types at levels 1 and 2. If Con(T) = 1, we
show Con(T*) € {1,2,00}. Further, we show that there are types in all of these three
categories. If Con(T) = 2, we show Con(T*) € {2,00}. Further, there are types in both
these categories, as was demonstrated in [AMT96] with fetch&add and swap.

Figure 1 summarizes all possible ways in which Con(T") and Con(T™) are related. There
is an “X” in the table element at row labeled ¢ and column labeled j if and only if there

'We refer to a type T as being at level k if Con(T) =k.

Con(T™)
Con(T) 1 } 2 [00
1 X X X
trivial | blind-increment | register [Her91]
2 X X
fetchgadd [AMT96] | swap [AMT96]
>3 X

Figure 1: All possible ways in which Con(T') and Con(1™) are related

is a type T such that Con(T') = ¢ and Con(T™) = j. The table also includes example
types for the different possible relationships. As the table indicates, this paper presents a
complete picture of how the synchronization power of a type is affected by a shift from the
single-object model to the multi-object model.

2 Preliminaries

The concepts in this section are not new and our treatment is therefore informal.

2.1 Definitions of n-consensus and n-IDconsensus

An object of type n-consensus can be accessed by at most n processes. Fach process may
invoke propose 0 or propose 1. The sequential specification is as follows: all operations
return the value first proposed.

An object of type n-IDconsensus can be accessed by at most n processes. Let Py, Py, ..., Py
be the names of these processes. Process P; may only invoke propose i. The sequential spec-
ification is as follows: all operations return the value first proposed.

Using a single n-IDconsensus object, Py, Py,..., P,—1 can determine a winner among
them as follows: each P; proposes ¢ to the object; if the object’s response is j, P; regards
P; as the winner.

As in the above, we write the type names in the typewriter font. Thus, “register”
denotes a type and “register” (in non-typewriter font) denotes an object.

2.2 Direct implementation

Let X and Y be types. Informally, X™ implements Y™ if there is a wait-free simulation of
shared-memory Y™ using shared-memory X™. (Recall that X™ denotes a shared-memory
consisting of infinitely many objects of type X such that in each of its steps a process may
access any of at most m objects atomically.) Each operation on the (implemented) shared-

memory Y™ is simulated by executing (possibly many) operations on the shared-memory
xmz2

Afek, Merritt, and Taubenfeld introduced the notion of “direct implementation” [AMT96].
X™ directly implements Y™ if there is an implementation of Y from X™ such that the

linearization of every operation op on the shared-memory Y™ can always be placed at the
first access to X™ during the simulation of op [AMT96].

We write X™ — Y™ to denote that X™ implements Y and X™ % Y™ to denote that
X™ directly implements Y.

The transitivity of % follows easily from definitions and is therefore stated below with-
out proof.,

Proposition 2.1 The relation % is transitive: X™ % Y™ and Y % ZP implies X™ % 77,

2.3 Previous results

Here we state results from [AMT96] that will be used in this paper.

Theorem 2.1 ([AMT96]) Let X and Y be any types. XP % Y9 implies XP™ &Y™ for
all m > 0.

Theorem 2.2 ([AMT96]) Let X and Y be any types. XP %Y implies Con(X??) >
Con(Y?), for all p,q > 0.

The following is a special case of a more general theorem from [AMT96].

Theorem 2.3 ([AMT96]) Cons(3-consensus™) > v/2m.

3 Multi-object theorem for types at level 3 or higher

In this section we prove that if Con(T") > 3, then Con(1™) = oco. This result follows from
two intermediate results derived in Sections 3.2 and 3.3 and the results of Afek, Merritt,
and Taubenfeld stated above. We conclude the result in Section 3.4 and, in Section 3.5,
sketch an alternative proof for the same result. We begin with our notation for describing
implementations of n-consensus and n-IDconsensus.

2Yometimes it is assumed that the implementation also has access to registers. We do not make such an
assumption in this paper.

3.1 Notation for describing consensus implementations

Informally, the following two elements constitute an implementation of an n-consensus ob-
ject O, shared by processes Py, ..., P,_1, in shared memory T*: (i) the objects O1,Oq, ..., Oy,
that O is implemented from, and (ii) the access procedures Propose(P;,v,), for i €
{0,1,...,n—1} and v € {0,1}. To apply a propose v operation on O, P; calls and executes
the access procedure Propose(FP;, v,0). The access procedure specifies how to simulate the
operation on O by executing operations on O1,09,...,0,,, accessing at most k of these
objects in any one step. The return value from the access procedure is deemed to be the
response of O to P;’s operation. We refer to Oy, O, ..., 0y as base objects of O. The space
complexity of the implementation is m, the number of base objects required in implementing

0.

Similarly, an implementation of an n-IDconsensus object J, shared by processes F, ..., Py-1,
in shared memory T* is constituted by: (i) the objects Oy, Og, ..., 0,, that O is implemented
from, and (ii) the access procedures Propose(FP;,1,0), for i € {0,1,...,n — 1} (recall that
process P; may only propose 7 on O). :

3.2 Directly implementing n-consensus from n-IDconsensus?

In this section, we show that n-IDconsensus?® directly implements n-consensus. Let O
denote the n-consensus object to be implemented. Let Pp,..., P,—1 denote the processes
that share (0, and let v; be the value that P; wishes to propose to O. For ease of exposition,
we develop the implementation in steps. First we show a simple implementation of an n-
consensus object from a single n-IDconsensus object and n registers. We then refine this
implementation to eliminate the use of registers. The resulting implementation uses 2n + 1
n-IDconsensus objects, but is still not a direct implementation. We then describe how to
make it direct.

Here is the first implementation: each P; first writes its proposal v; in a register R; and
then performs IDconsensus with other processes by proposing i to an n-IDconsensus object
W. If Py is the winner of this IDconsensus, then P; returns the value in register Ry as the
response of the implemented n-consensus object O.

The next implementation, eliminating the use of registers, is in Figure 2. This imple-
mentation uses 2n+ 1 n-IDconsensus objects. The object named W serves the same purpose
as before: to determine the identity of the process whose proposal is the winning proposal.
The objects O; 9 and O;; help P; communicate its proposal to other processes. Fach P
begins by proposing i to O, ,, (this corresponds to the step of writing v; in R; in the pre-
vious implementation). P; then performs IDconsensus with other processes by proposing i
to W. Let winner be the value returned by W. If winner = 2, then F; is the winner and
its proposal v; is the winning proposal, so P; returns v; as the response of the implemented
n-consensus object O. Otherwise, P; must learn P ;p,,ep’s proposal, which is the winning
proposal. For this, P; proposes ¢ to sz’nner,O‘ If Owinnero returns winner, then the
proposal of P per must be 0, so P; returns 0; otherwise the proposal of P, must
be 1, so P; returns 1. The correctness of this implementation is obvious. We thus have:

W, {00, 0;1 | 0<i<n—1}: nIDconsensus objects

Procedure Propose(P;, v;, O) /¥ v € {0,1} */
winner : integer local to P
begin
Propose(PZ-, ia Oi,ui)
winner := Propose(F;, i, W)
if winner = i then
return v;
else if Propose(Pi,i,Owinner’O) returns winner
return 0
else return 1
end

A ol

Figure 2: Implementing n-consensus from n-IDconsensus

Lemma 3.1 n-IDconsensus — n-consensus.

The above implementation is not direct: P;’s operation on O is linearized at its access
to W and not at its first access to a base object. We turn it into a direct implementation
simply by requiring P; to perform lines 1 and 2 in Figure 2 simultaneously, in one atomic
action. This results in a direct implementation of n-consensus from n-IDconsensus?. We
thus have:

Lemma 3.2 n-IDconsensus? 4, 5 _consensus.

2.3 The main lemma

We prove that, for all T', if there is an implementation of 3-consensus from 7', then there
is a direct implementation, of twice the space complexity, of 3-IDconsensus from 72

Our design exploits the well-known bivalency argument due to Fischer, Lynch, and
Paterson [FLP85]. Since bivalency arguments are standard, our definitions here are infor-
mal. Let O, shared by Py, P1, and P,, be a 3-consensus object implemented from objects
O1,...,0,, of type T. Let v; denote P;’s proposal to O. A configuration of O is a tuple
consisting of the states of the three access procedures Propose(F;, v;, O) (i € {0,1,2}) and
the states of objects Oy1,...,0,. A configuration C' is v-valent (for v € {0,1}) if there
is no execution from C in which 7 is decided upon by some F;. In other words, once in
configuration C, no matter how Fy, Py, and P, are scheduled, no P; returns 7. A configura-
tion is monovalent if it is either 0-valent or 1-valent. A configuration is bivalent if it is not

monovalent. If F is a finite execution of the implementation starting from configuration C,
E(C') denotes the configuration at the end of the execution FE.

Lemma 3.3 T — 3-consensus implies T? % 3-IDconsensus.

Proof et I be an implementation of 3-consensus from 7. Let O, shared by Py, Py, and
Py, be a 3-consensus object implemented using 7 from objects O1,...,0,, of type T'. Pick
valy, valy, and vals, the proposals of Fp, Py, and P;, respectively, so that Cg, the initial
configuration of O, is bivalent. (For instance, valy = 0 and val;y = valy = 1 would be
adequate.)

Let E be a finite execution from Cy such that (1) Cepyy = E(Ch) is bivalent, and (2) For
all P, if P; takes a step from Cey, the resulting configuration is monovalent. (If such F does
not exist, it is easy to see that there is an infinite execution E’ in which no process decides.
Thus, some process takes infinitely many steps in £’ without deciding, contradicting the
wait-freedom property of the implementation of O0.) Let 5, be the set of P; whose step from
Cerge results in a v-valent configuration. Since C. is bivalent, neither Sp nor Sy is empty.
Furthermore, Sp N Sy = (. Without loss of generality, let Sy = {Po} and S; = {Py, P»}.
Thus, if Py is the first to take a step from Cyy, then regardless of how Py, Py, and P,
are scheduled subsequently, every P; eventually decides 0. Similarly, if either of P, and P,
is the first to take a step from C.;, then regardless of how Py, Pl, and Py are scheduled
subsequently, every P; eventually decides 1.

In the configuration C\i, let og, o1, and o denote the states of the access procedures
Propose(Py, valy, O), Propose(Py, valy, O), and Propose(Py, vals, O), respectively. Also let
11y -y fb denote the states of Oy, ..., 0y, respectively, in Cepyp.

Given the above context, we are ready to describe the direct implementation of a

3-IDconsensus object A, shared by processes Qo, @1, and @2, from objects Of,...,0/ ,

7y...,00 of type T. Each @; may access up to two base objects atomically in a single
step. ‘

The idea is to use the given implementation Z to build two 3-consensus objects (from
the available objects Of,...,0.,,0%,...,07), initialize both of them to C.p;, and require
Qo, @1, and @3 to access them in such a way that, if @; is the first to take a step, all of
Qo, @1, and @2 eventually return ¢. The details are as follows.

Using implementation Z and the objects Of,...,0},, implement a 3-consensus object

(' that can be shared by P}, P{, and Pj. Similarly, using implementation 7 and the objects

7,...,00 implement another 3-consensus object 0" that can be shared by Pj§, Py, and
Py.

Initialize each of O and O to C,,;; more specifically,

1. Since O is implemented to be shared by P}, Py, and Py, it supports the access pro-
cedures Propose(P, valy, O), Propose(Py, valy,0'), and Propose(P}, valy, 0'). Ini-
tialize the states of these three access procedures to og, o1, and 04, respectively.

2. Initialize the states of objects Of,..., 0, to py,..., im, respectively.

3. Since 0" is implemented to be shared by Py, Py, and PY, it supports the access
procedures Propose(P{, valy, 0”), Propose(P, valy, O"), and Propose(Py, valy, O").
Initialize the states of these three access procedures to og, oy, and o3, respectively.

4. Initialize the states of objects Of,..., 0 to p1,..., fim, respectively.

Fach @); executes two access procedures, one of (0 and one of (', The exact mapping of
which two access procedures (); executes is as follows: Process (g executes Propose(P, valg, 0')
and Propose(P{,valy, 0"); @1 executes Propose(Py,valy,0') and Propose(Py, valy, O");
and)y executes Propose(P;, valy, O') and Propose(Py, valy, O"). Each process executes
its access procedures as follows. In its first step, each process executes the first step of both
of its access procedures simultaneously (this is possible because in the implementation being
designed a process is allowed to access up to two objects in one step). After its first step,
each process executes any one of its access procedures to completion and then executes the
other access procedure to completion. Once a process executes both its access procedures
to completion, it knows the decision values d' and d” returned by the 3-consensus objects
O and O, respectively.

The key observation is the following: If ¢J; is the first process to take a step (among
Qo, @1, and @3), since the first step of ¢; corresponds to the first step of both of its access
procedures, the decision values of both (' and O become fixed at the end of Q;’s first step.
Furthermore, given our mapping between processes and access procedures, we have the
following obvious relationships: (d’,d”) = (0,1) if and only if Qg is the first process to take
a step, (d’,d"”) = (1,0)if and only if ()1 is the first process to take a step, and (d',d") = (1,1)
if and only if @y is the first process to take a step. (Notice that (d',d"”) = (0,0) cannot
occur.) Thus, from the values d’ and d”, each @; determines the identity of the); which
took the very first step and returns 4. This completes the proof of the lemma. a

Lemma 3.4 T — 3-consensus implies T* % 3-consensus.

Proof Suppose that T — 3-consensus. By Lemma 3.3, 72 % 3-IDconsensus. By
Theorem 2.1, T* % 3-IDconsensus?. This, together with Lemma 3.2 and the transitivity
of & (Proposition 2.1), gives the lemma. a

3.4 Multi-object theorem for types at level 3 or higher

The next lemma states that if type T objects are strong enough to implement 3-consensus
objects in the standard single-access model, then they are good for implementing n-consensus
objects (for any n) provided that processes can access sufficiently many of them (2n2, to be
precise) in a single step.

Lemma 3.5 Con(T) > 3 implies Con(T?"") > n.

Proof Con(T) >3

= T — 3-consensus

= T* & 3-consensus (by Lemma 3.4)

= ¥Ym > 0: Con(T*™) > Con(3-consensus™) (by Theorem 2.2)

= ¥Ym > 0: Con(T*™) > /2m (by Theorem 2.3)

= Con(T*) > n (by letting m = n?/2)

O

Finally, we present the multi-object theorem for types at level 3 or higher. This theorem
is immediate from the above lemma.

Theorem 3.1 Con(T') > 3 implies Con(T*) = .

3.5 Sketch of an alternative proof

In this section, we sketch an alternative proof of Theorem 3.1. Afek, Merritt, and Taubenfeld
introduced a consensus object that also supports a read operation [AMT96]. Specifically, an
object of type (f,r)-consensus can be accessed by f “proposer” processes and r “reader”
processes. A proposer may only invoke propose 0 or propose 1, and a reader may only
invoke read. The sequential specification is as follows: if the first operation is propose v, all
operations return v; if the first operation is a read, operations return arbitrary responses.
A result in [AMT96] states that an n-consensus object, for any n, can be implemented
using (f,r)-consensus objects if sufficiently many of them can be accessed simultaneously.
Specifically:

Theorem 3.2 ([AMT96]) (f,r)-consensus™ — n-consensus, where n > /mrf + f2/4+
f/2.

We can define the type (f,r)-IDconsensus and obtain a result analogous to Theorem
3.2. Specifically, an object of type (f,r)-IDconsensus can be accessed by at most f pro-
posers, P, Py, ..., Pr_1, and r readers. Proposer P; may only invoke propose ¢, and a reader
may only invoke read. The sequential specification is as follows: if the first operation is
propose 1, all operations return ¢; if the first operation is a read, operations return arbitrary
responses. With minor modifications, the proof of Theorem 3.2 can be adapted to obtain
the following result, an analog of Theorem 3.2 for IDconsensus:®

3The proof of Theorem 3.2 uses the following idea. To solve consensus, processes split themselves into
two groups (g and G, processes in each G; solve consensus recursively to obtain the consensus value @;
for the group, then the two groups compete with all processes in G; proposing v;, and finally every process
adopts the value proposed by the winning group. For this idea to work in the proof of Theorem 3.3, which
deals with IDconsensus instead of consensus, it should be possible for the processes in the losing group,
say (1, to determine the winner of the winning group, namely, Go. If registers are available, processes in
each group G; can write the winner of G; in some register R(G;) before competing with the other group
Gz Thus, processes in Gy, the losing group in our running example, can easily determine the winner of the
winning group Go by reading the register R(Go). Unfortunately, however, registers are not available — the
only available objects are (f,r)-IDconsensus objects. We overcome this difficulty with a trick similar to the
one used in Section 3.2, where we first presented a construction that uses registers and then showed how to
eliminate registers.

Theorem 3.3 (f,r)-IDconsensus™ — n-IDconsensus, where n > /mrf + f2/4 + /2.

If a type implements 3-consensus, using the familiar bivalency arguments it is fairly
easy to show that T directly implements (2,1)-IDconsensus. Thus:

Theorem 3.4 T — 3-consensus implies T % (2,1)-IDconsensus.

Now Theorem 3.1 can be proved as follows. Suppose that T — 3-consensus. By
Theorem 3.4, T ¢ (2,1)-IDconsensus. A result in [AMT96] states that if X % Y,
then X™ % Y™, Using this, we have T/ diy (2, 1)-IDconsensus”2/2. By Theorem 3.3,
(2, 1)—IDc:onsensus”2/2 — n-IDconsensus. Thus, we have T*/* - n-IDconsensus. Since
n-IDconsensus — n-consensus (by Lemma 3.1), we have T™*/2 — n-consensus. There-
fore, Con(T™*) = co. Hence Theorem 3.1,

4 Multi-object theorems for types at levels 1 and 2

In this section, we relate Con(T) and Con(T*) when Con(T) is 1 or 2. Specifically, if
Con(T) = 1, we show that Con(T*) € {1,2,00}, and exhibit types in all three of these
categories. If Con(T) = 2, we show that Con(T*) € {2, 00}; it was shown in [AMT96] that
there are types in both these categories. The following lemma is useful in establishing some
of these results.

Lemma 4.1 Con(T*) > 3 implies Con(T™) = oco.

Proof Con(T*) > 3
= Con(T™) > 3 for some m > 0
= Con((T™)*) = o0 (by Theorem 3.1)
= Con(T*) = o0

Next we present the multi-object theorem for types at level 1.

Theorem 4.1

1. Con(T) =1 implies Con(T*) € {1,2,00}.

2. There is a type T such that Con(T) =1 and Con(T*) = 1.

3. There is a type T such that Con(T) =1 and Con(T*) = 2.

4. There is a type T' such that Con(T) =1 and Con(T*) = co [Her91].

10

Proof Part (1) follows directly from Lemma 4.1. For part (2), consider the type trivial
which supports only a single operation that always returns the same response. Clearly,
Con(trivial) = 1 and Con(trivial*) = 1. For part (4), register is an example of a
type T for which Con(T) = 1 [CIL94, DDS87, LA87, Her91] and Con(T™) = co [Her91].
We prove part (3) below.

Consider the blind-increment type that supports read and blindInc operations. The
read operation returns the value of the object without affecting it. The blindInc operation
increments the value and returns ack.

Claim 4.1 Con(blind-increment) = 1.

Proof: This claim is well-known and is immediate from the following three facts:

1) blind-increment has a (trivial) implementation from atomic-snapshot 4
7
il) atomic~-snapshot has an implementation from register [AADT93, And93], and
g ?

(iii) register cannot implement 2-consensus [CIL94, DDS87, LA87, Her91]. o
Claim 4.2 Con(blind-increment?) > 2.

Proof: We can implement a 2-IDconsensus object, shared by processes Fy and P;, from
two blind-increment objects Og and Oy, both initialized to 0, as follows. Process F; both
reads O; and blind-increments O; in the same step. If P; reads 0, it is the winner, and so it
returns ¢. Otherwise Pris the winner, so it returns 4. It is easy to verify that this protocol
is correct. From this and Lemma 3.1, we have the claim. O

Claim 4.3 For all m > 0, Con(blind-increment™) < 2.

Proof: The operations of blind-increment commute. Therefore, by a result in [AMT96],
Con(blind-increment™) < 2. a

By the above three claims, blind-increment is an example of a type 7" for which
Con(T) =1 and Con(T*) = 2. This completes the proof of Theorem 4.1. 0

Finally, we present the multi-object theorem for types at level 2.

Theorem 4.2

1. Con(T) = 2 implies Con(1T™) € {2,00}.
2. There is a type T such that Con(T) = 2 and Con(1™) = 2 [Her91l, AMTI6].

4Tnformally, an object of type atomic-snapshot stores a vector of n integers, where n is the number of
processes that may access the object. Any process may perform a read operation, which simply returns the
vector. Process P; may perform a write (i,v) which changes the value of the i*" element of the vector to v.

11

3. There is a type T such that Con(T) = 2 and Con(T*) = oo [Her91, AMTI6].

Proof Part (1) is immediate from Lemma 4.1 and the observation Con(T*) > Con(T).
Parts (2) and (3) follow from the following known results: Con(fetch&add) = Con(swap) =
2 [Her91], Con(fetch&add™) = 2 [AMT96] and Con(swap*) = co [AMTI6]. o

References

[AAD%93] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit. Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873-890, 1993.

[AMT96] Y. Afek, M. Merritt, and G. Taubenfeld. The power of multi-objects. In Pro-
ceedings of the 15th Annual ACM Symposium on Principles of Distributed Com-
puting, May 1996.

[And93] J. Anderson. Composite registers. Distributed Computing, 6(3):141-154, 1993.

[CIL94] B. Chor, A. Israeli, and M. Li. Wait-free consensus using asynchronous hardware.
SIAM Journal on Computing, 23(4):701-712, August 1994.

[DDS87] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism needed
for distributed consensus. Journal of the ACM, 34(1):77-97, January 1987.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. JACM, 32(2):374-382, 1985.

[Her91] M.P. Herlihy. Wait-free synchronization. ACM TOPLAS, 13(1):124-149, 1991.

[LAS8T7] M.C. Loui and H.H. Abu-Amara. Memory requirements for agreement among
unreliable asynchronous processes. Advances in computing research, 4:163-183,
1987.

[MT94] M. Merritt and G. Taubenfeld. Atomic m-register operations. Distributed Com-
puting, 7:213-221, 1994.

12

	On the Power of Multi-Objects
	Dartmouth Digital Commons Citation

	tmp.1600290363.pdf.YjdFs

