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Abstract

Background: Patient gene expression information has recently become a clinical feature used to evaluate breast
cancer prognosis. The emergence of prognostic gene sets that take advantage of these data has led to a rich
library of information that can be used to characterize the molecular nature of a patient’s cancer. Identifying robust
gene sets that are consistently predictive of a patient's clinical outcome has become one of the main challenges in
the field.

Methods: We inputted our previously established BASE algorithm with patient gene expression data and gene sets
from MSigDB to develop the gene set activity score (GSAS), a metric that quantitatively assesses a gene set's activity
level in a given patient. We utilized this metric, along with patient time-to-event data, to perform survival analyses
to identify the gene sets that were significantly correlated with patient survival. We then performed cross-dataset

metric to characterize its role in patient survival.

analyses to identify robust prognostic gene sets and to classify patients by metastasis status. Additionally, we
created a gene set network based on component gene overlap to explore the relationship between gene sets
derived from MSigDB. We developed a novel gene set based on this network’s topology and applied the GSAS

Results: Using the GSAS metric, we identified 120 gene sets that were significantly associated with patient survival
in all datasets tested. The gene overlap network analysis yielded a novel gene set enriched in genes shared by the
robustly predictive gene sets. This gene set was highly correlated to patient survival when used alone. Most
interestingly, removal of the genes in this gene set from the gene pool on MSigDB resulted in a large reduction in
the number of predictive gene sets, suggesting a prominent role for these genes in breast cancer progression.

Conclusions: The GSAS metric provided a useful medium by which we systematically investigated how gene sets
from MSigDB relate to breast cancer patient survival. We used this metric to identify predictive gene sets and to
construct a novel gene set containing genes heavily involved in cancer progression.

Keywords: Breast cancer, Gene sets, Prognosis, Survival prediction

Background

Accurate cancer prognosis offers patients an approxima-
tion of the prospective clinical outcome of their disease
while aiding physicians in developing treatment plans.
Traditionally, prognoses have been based on histological
features of patient tumors [1]. However, these histology-
based predictions fail to account for the genetic hetero-
geneity between cancer samples, leading to varied
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prediction accuracy. Understanding the unique molecu-
lar profile of each patient’s cancer may improve cancer
prognosis accuracy and further the development of per-
sonalized cancer therapies [1]. To this end, several gen-
etic biomarkers have been defined for use in the clinic
as indicators of cancer prognosis [1]. Initially, these
markers were single genes whose expression was corre-
lated with clinical outcome [1]. There now exist several
multi-gene signatures that have been developed to im-
prove upon the predictions of single-gene markers [2-16].
Many of the gene sets are composed of individual genes
whose expression is correlated with disease outcome,
while others are based on knowledge of fundamental
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cancer mechanisms that are believed to play a role in pa-
tient survival time. In breast cancer, predictive signatures
have been developed extensively. Some of these signatures,
such as NKI70 [2], Oncotype DX [3], and PAM50 [17],
have been approved for use in the clinic. By combining the
expression of these genes with information on each patient,
such as subtype of cancer and treatment status, a more ac-
curate prognosis can be made [18]. We argue that it will be
useful to systematically investigate the effectiveness of
these gene sets in predicting breast cancer prognosis.

Previous studies have integrated signatures to examine
their combined effect on prognosis accuracy [19,20].
These studies show that the integration of different
prognostic signatures can significantly improve the ac-
curacy of clinical outcome prediction. However, these
studies focused on a small number of well-characterized
gene signatures in breast cancer. Expanding this analysis
to a larger number of signatures can provide greater
insight into the molecular basis for a patient’s cancer.
One resource that can aid in this analysis is MSigDB
[21]. MSigDB is an online database of gene sets that
have been curated across many different genome-wide
studies. These gene sets capture genetic regulation
across different biological contexts, many of them relat-
ing to the hallmarks of cancer such as cell proliferation,
apoptosis, and DNA repair [22]. Many previously re-
ported prognostic signatures are included in this data-
base, such as the 70-gene signature by Van't Veer et al.
[2] and the 76-gene signature by Wang et al. [8] By com-
bining these signatures and biological pathways in one
place, MSigDB provides a resource that allows us to sys-
tematically investigate thousands of gene sets for their
prognostic significance by applying them to patient gene
expression datasets that include survival information.

We have previously developed an algorithm called
BASE (binding association with sorted expression) to
infer the regulatory activity of a transcription factor (TF)
based on the expression levels of its target genes [23,24].
Using this method, we have successfully defined an E2F4
target gene-based signature for predicting survival times
of patients with breast cancer [25]. We have shown that
BASE can accurately infer E2F4 activity in cancer sam-
ples based on the target gene set, which stratifies breast
cancer patients into good and poor prognosis groups.
Similar to GSEA analysis, this method can be modified
and extended to calculate a score for any gene set. The
score, which we have termed the gene set activity score
(GSAS), is a non-linear summary of a gene set’s compo-
nent gene expression levels. This metric is a useful
medium by which we can stratify patients for survival
analysis, which allows us to distinguish gene sets that
play a role in prognosis from those that do not.

Here, we apply the BASE algorithm to systematically
investigate the association of 4,257 gene sets from
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MSigDB with patient survival. We begin by demonstrat-
ing applications of this technique that can be used to
compare gene sets across datasets. In the first applica-
tion, we use our analysis to identify and characterize 120
robustly predictive gene sets that remain significantly
correlated with patient survival time across each dataset
tested. In the second application, we use the GSASs to
select features in one dataset that we use to classify me-
tastasis status in multiple validation datasets, achieving
high prediction accuracy. In the second part of our
study, we explore the shared gene relationship between
survival-associated gene sets on MSigDB. We create a
gene set network based on genetic overlap between the
gene sets of MSigDB and develop a novel proliferation-
based gene set based on the network topology. We find
that the GSASs for this gene set are significantly corre-
lated with patient survival across all datasets tested. Fur-
thermore, classification using the proliferation-based
gene set’s component genes as features achieves a high
accuracy score in predicting metastasis status. Finally,
we remove the proliferation-based gene set’s genes from
all the gene sets on MSigDB and find that a gene set’s
predictive ability is related to the number of genes it has
from the proliferative-based gene set.

Methods

Dataset and data processing

Breast cancer gene expression datasets were down-
loaded from ROCK Breast Cancer Functional Genomics
[26]. Each dataset chosen contained at least 150 sam-
ples and included standard clinical data and survival
outcome information (either overall survival “os”, distant
metastasis free survival “dmfs”, or relapse free survival
“rfs”). Five datasets [8,10,27-29] and two sub-datasets
derived from a meta-analysis study [26] were downloaded
in all, resulting in a collection of 1,591 unique samples
across seven independent datasets. Either one- or two-
channel arrays were used to measure gene expression of
samples in each dataset.

Gene set data was collected from MSigDB (http://www.
broadinstitute.org/gsea/msigdb) [21]. All gene sets down-
loaded were from the C2 curated gene sets collection,
which contains 4,257 gene sets collected from pathway da-
tabases, literature, and the knowledge of domain experts.
The gene set data was stored in a binary matrix with rows
representing genes and columns representing gene sets. A
dummy variable was used to indicate presence or absence
of a gene in a gene set.

Calculation of the activity score of gene sets

For each dataset, patient gene expression data and the
list of gene sets downloaded from MSigDB were input-
ted into the BASE algorithm [23,24]. Briefly, the BASE
algorithm sorts genes by their relative expression levels
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in a given sample and generates two cumulative distribu-
tion functions to encapsulate the expression activity of a
target gene set (foreground function) and a complemen-
tary gene set (background function). BASE then calculates
the maximum division of the two distribution functions to
get a preliminary score. This preliminary score is similar
in concept to the D-statistic of the Kolmogorov-Smirnov
test and is representative of the expression activity of the
target gene set in a given sample, with a higher prelimin-
ary score indicating higher gene set activity and a lower
preliminary score indicating lower gene set activity. BASE
then normalizes the preliminary score against the average
of the absolute value of the preliminary scores from 1,000
permuted gene sets of equal size to the target gene set.
The resulting metric is referred to as the gene set activity
score (GSAS). For each sample in a given dataset, this ana-
lysis was repeated for every gene set from the C2 curated
gene set collection of MSigDB.

Survival analysis
We measured the correlation between gene set activity
and patient survival outcomes using Cox proportional
hazards models. A univariate model was fitted to exam-
ine the relationship between GSAS and survival time,
and an additional multivariate model was fitted to ac-
count for conventional clinical prognostic factors, in-
cluding age, tumor size, tumor grade, ER status, and
lymph node status, in addition to GSAS. Tumor grade
was converted into a binary factor by assigning grade 2
and grade 3 tumors into one group and grade 1 tumors
into the other. Kaplan-Meier curves were generated to
visualize the results derived from the Cox proportional
hazards models. Specifically, GSASs were dichotomized
about 0 reflecting high (>0) and low (<0) gene set activ-
ity to stratify patients into two groups and then Kaplan-
Meier curves were generated for each patient group.
Survival analyses were implemented in the R program-
ming language using the “survival” package. The “survreg”
and “coxph” functions were used to create the Cox pro-
portional hazards models. The “survdiff’” function was
used to compare the difference between the positive and
negative GSAS groups in the Kaplan-Meier curves.

Random forest model for predicting metastasis

A Random Forest classifier was trained using gene sets
that significantly differed in GSAS between metastatic
and non-metastatic samples as features (Wilcoxon
ranked sum test, FDR < 0.01). Gene set features were se-
lected from one dataset and used to predict metastasis
status of samples from a second validation dataset. The
performance of the model, using these features, was
evaluated in the second dataset using 10-fold cross-
validation. Specifically, samples were randomly divided
into 10 subsets with 9 subsets being used to train the
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classifier and predict the metastasis status of the
remaining validation set. This process was repeated 10
times so that all samples were in the validation set once.
A receiver operating characteristic (ROC) curve was
generated and the area under the curve (AUC) was cal-
culated to assess model effectiveness. The overall cross-
validation procedure was iterated 10 times and to obtain
an average AUC score. Random Forest analyses were
performed in R using the “randomForest” package.

Functional enrichment analysis

Genes from significant signatures were inputted into
DAVID (http://david.abcc.ncifcrf.gov) [30] and run
against a Homo sapiens gene background. Functional an-
notation clustering was used to group genes with similar
functions together and was run at a classification strin-
gency of “medium”.

Construction of overlapping network for gene sets

Gene overlap was examined in gene sets that were sig-
nificantly correlated with breast cancer survival in the
van de Vijver dataset (FDR < 0.01). Gene sets were sepa-
rated into two groups based on hazard ratio (hr) in the
van de Vijver dataset, with gene sets with a hr > 1.00
constituting a “negative” set and gene sets with a hr <
1.00 constituting a “positive” set. Further analysis was
performed separately on each set. An overlap score was
calculated by comparing the number of genes shared in
common between each gene set and dividing it by the
union of the genes contained in the two gene sets. This
process was repeated until the overlap score for all
possible pairs of signatures in a set had been calculated.
Signature pairings with overlap scores less than 0.20
were then filtered out of the data. The resulting datasets
were visualized using Cytoscape with each node repre-
senting a different signature. Node size was scaled to the
p-values of calculated from the survival analysis, with
larger nodes corresponding to smaller p-values. Edge
length was scaled to the overlap score, with shorter edge
lengths indicating higher overlap scores. Significant gene
sets across all seven datasets (p < 0.05) were highlighted
within the network.

Network module selection and the core gene set

Modules in the network were identified qualitatively
based on node clustering patterns. A single network
module rich in gene sets significantly associated with pa-
tient survival across all datasets was selected for further
analysis. Genes present in at least 40% of the gene sets
in the module of interest were selected for. These genes
made up the module’s “core gene set”. The GSAS for
this core gene set was calculated and subjected to sur-
vival analysis as described above. For Random Forest
classification, a Wilcoxon ranked sum test was performed


http://david.abcc.ncifcrf.gov

Varn et al. BMC Medical Genomics (2015) 8:11

to measure the difference between core gene set gene ex-
pression levels in the metastatic and non-metastatic
group. Genes that significantly differed (FDR < 0.01) be-
tween the two groups were selected as features. From
there, the Random Forest classification procedure was
followed as described above. The resulting core gene set
was also examined for functional enrichment using DA-
VID, as described above.

Survival analysis after removal of the core gene set

The genes of the core gene set were removed from the
gene sets downloaded from MSigDB using two ap-
proaches. The first approach is similar to a technique re-
ported by Donato, et al. to analyze crosstalk between
pathways [31]. In this approach, the genes of the core
gene set were removed from all gene sets without re-
placement. In the second approach, each gene set from
MSigDB that shared genes with the core gene set had
the shared genes substituted with random genes that
were not already present in the gene set. The GSASs for
the resulting gene sets from each method were then
recalculated and fitted with a univariate Cox propor-
tional hazards model.

Results

Activity scores of MSigDB gene sets in breast cancer
patients

Using the gene expression data provided by van de
Vijver et al. [27], we calculated the gene set activity
score (GSAS) for each gene set contained in the C2 cu-
rated gene set collection of MSigDB. Briefly, the GSAS
for a sample is determined by calculating either the
maximum positive or negative deviation between two
empirical distribution functions. The foreground func-
tion is based on the position of the genes of a gene set
in a list of genes rank-ordered by the gene expression
values from the sample, while the background function
is based on the position of the genes not found in the
target gene set. Thus, a negative GSAS indicates low
gene set activity, due to low relative expression levels of
the component genes, while a positive GSAS indicates
high gene set activity, due to high relative expression
levels of the component genes. Figure 1A demonstrates
the gene distribution of three samples exhibiting either
a low (GSAS = -6), intermediate (GSAS = 1) or high
(GSAS = 8) GSAS for a well-known breast cancer gene
signature reported by van’t Veer et al. [2]. As expected,
the genes in the sample with the low score cluster to-
ward the left, while the genes in the sample with the
high score cluster toward the right. Gene sets which
have a GSAS around zero have component genes whose
expression values are evenly distributed about zero. For
each gene set this method was applied to, the resulting
distribution of GSASs across all samples followed a
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bimodal distribution. This can be seen in the distribu-
tion of GSASs for the signature reported by van’t Veer
et al. (Figure 1B).

Survival analysis using GSAS

The GSAS is useful when performing survival analysis
because it can be used to stratify samples based on the
activity level of a gene set’s component genes in a
given sample. Gene sets in the MSigDB C2 curated
gene set collection tended to be representative of bio-
logical pathways or molecular signatures associated
with a biological function or disease state. As a result,
the GSAS provided a glimpse of the underlying biology
of each sample. Because the GSASs of the van’t Veer
gene set followed a bimodal distribution with a local
minimum at approximately 0, samples were dichoto-
mized by GSAS, with one group containing samples
with GSASs < 0 and one containing samples with
GSAS > 0. For the van’t Veer gene set, samples with a
GSAS > 0 demonstrated significantly shorter survival
time than samples with a GSAS < 0 (p = 9.7e-14)
(Figure 1C). When fitted with a multivariate cox pro-
portional hazards model that took into account other
clinical factors including age, grade, tumor size, ER
status, and lymph node status, GSAS for this gene set
remained significant (p = 1.3e-6) with a hazard ratio of
1.21 (Figure 1D).

Several gene sets available on MSigDB have been re-
ported to be significantly associated with breast cancer
survival, while others represent pathways that may be
significantly associated with patient survival. However,
many of these signatures and pathways are not robust in
predicting clinical outcome across large groups of
patients, and their predictive value can be highly
dependent on the dataset from which they are derived
[32,33]. Figure 2 shows an example of this, with samples
from four publicly available datasets [8,10,27,28] dichot-
omized based on their GSAS from a gene set containing
genes upregulated by transforming growth factor-beta 1,
a protein involved in the regulation of cell proliferation
[34]. While the gene set activity was significantly corre-
lated with distant metastasis-free survival in the van de
Vijver and Wang datasets (p = 4.4e-6 and 0.02, respect-
ively), there appeared to be little separation between
samples with high and low gene set activity in the
Schmidt and Sotiriou datasets (p > 0.1 for both).

Identification of robust gene sets

Gene sets whose predictive value is localized to only a
few datasets are not of much use clinically, as the associ-
ation between patient survival and gene set activity may
be due to confounding factors in the datasets or a small
overall patient sample size. Gene sets with consistent
prognostic performance across many datasets are less
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Figure 1 The GSAS of VANTVEER_BREAST_CANCER_METASTASIS_DN predicts patient survival. (A) The distribution of genes from this
gene set in an expression-ranked gene list in samples with a low (Sample X), intermediate (Sample Y), and high (Sample Z) GSAS. (B) The distribution
of GSASs across all samples in a dataset. (C) Patients with positive GSASs (red curve) show significantly shorter survival times than those with negative
GSASs (green curve). Vertical hash marks indicate points of censored data. (D) In a Cox PH model, this GSAS significantly predicts patient survival even
after adjusting for traditional clinical features. A red dotted line indicates where the hazard ratio=1.

likely to have these problems, as they have been tested
over a more diverse setting with a greater overall patient
sample size. To identify gene sets such as these, we first
extended our analysis done in the van de Vijver et al
dataset (see above) to four more datasets [8,10,28,29]
and two sub-datasets derived from a meta-analysis study
[26] for a total of seven independent analyses. Each ana-
lysis yielded a list of gene sets ranked by its fit in a Cox
proportional hazards model based off the given dataset’s
patient survival information. We then identified gene
sets that remained predictive of survival across all seven
datasets by selecting for the ones that had a Cox propor-
tional hazards p-value < 0.05 in every analysis. This
yielded a list of 120 gene sets that were significantly as-
sociated with patient survival across every dataset we
tested (Figure 3A, Additional file 1). Examples of some
of these robustly predictive gene sets are shown in
Figures 3B-E as survival curves generated from the van
de Vijver dataset. The two gene sets in Figures 3B and C
have a hazard ratio greater than 1 (hr = 1.33 and 1.26,
respectively). In these gene sets, higher activity is associ-
ated with decreased survival, indicating that these gene
sets are representative of a deleterious expression

signature. The opposite is shown in the gene sets repre-
sented in Figures 3D and E, in which both gene sets
have a hazard ratio less than 1 (hr = 0.75 and 0.83, re-
spectively). For these gene sets, increased gene set activ-
ity is associated with increased survival time. This
suggests that these gene sets are indicative of a gene ex-
pression profile exhibited by patients having a favorable
prognosis.

We followed up this analysis by using DAVID Func-
tional Annotation Clustering [30] to investigate whether
the genes present across these gene sets shared similar
functions. This would allow us to ascertain whether
these gene sets were consistently predictive because they
represented a common cancer associated process, or be-
cause they encompassed several unique functions. The
120 gene sets first had to be separated based on hazard
ratio from the van de Vijver et al dataset into a deleteri-
ous group (hr > 1) and a protective group (hr < 1) to
eliminate noise that would occur if the two groups were
examined together. The genes in these two groups were
then compiled into separate lists and examined using
DAVID. Due to the large number of genes in the dele-
terious group, we were required to reduce the size of the
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for this gene set are no longer significant (p > 0.1).

gene list. We chose to do so by selecting the genes that
showed up in at least 5% of the deleterious gene sets.
This procedure was not necessary for the protective
group due to its smaller size. Our analysis showed that
genes from both the deleterious group and the protect-
ive group were enriched in genes whose functions re-
lated to cell cycle regulation (Additional files 2 and 3).
We additionally examined whether the GSASs for
these gene sets could be used to distinguish clinically
relevant subgroups. We hierarchically clustered samples
from the van de Vijver et al dataset based on each sam-
ple’s GSAS for each of the gene sets tested. We then
looked at whether clinical features such as ER status,
lymph node metastasis status, and distant metastasis oc-
currence clustered as well. Figure 4 displays a heatmap
detailing the results of this analysis. Samples were split

into a red group and a green group based on where they
clustered. The red group was enriched in samples with
ER- breast cancer and distant metastasis occurrence
relative to the green group, both indicators of more se-
vere disease. The trends observed here suggest that
GSASs from the robust gene sets are capturing clinically
relevant processes in addition to survival information.

Metastasis classification using metastasis-associated
GSASs

We next tested how informative GSASs were in metasta-
sis classification across datasets using a Random Forest
classifier. We selected gene sets that significantly dif-
fered between metastatic and non-metastatic samples as
features since the full array of 4,257 gene sets contained
many gene sets unrelated to metastasis and cancer (see
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than =3 or greater than 3 were adjusted to —3 and 3, respectively. Green is indicative of a lower (more negative) GSAS for a sample while red is
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green group.

Methods). We began this analysis in the van de Vijver
dataset, where 520 gene sets qualified to be used as fea-
tures. 10-fold cross validation was then performed to as-
sess the classifier’s accuracy at predicting metastasis
status for samples from the same dataset. The area
under the ROC curve (AUC) was chosen to measure

classifier performance in terms of specificity and sensi-
tivity values. Our analysis on the van de Vijver dataset
yielded an AUC of 0.75, which suggests relatively good
performance (Figure 5A). The relative importance
assigned to each gene set by the Random Forest classi-
fier can be seen in Figure 5B.
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Figure 5 Metastasis prediction performance using GSAS. (A) A receiver operating characteristic (ROC) curve for the Random Forest classification
of metastatic versus non-metastatic samples in the van de Vijver dataset using GSASs that significantly differed between metastatic and non-
metastatic samples in the van de Vijver dataset (Wilcoxon rank-sum test, FDR < 0.01) as the training data. (B) The relative importance values
assigned by the Random Forest classifier used in (A) to each gene set when classifying samples. (C, D) AUC scores for the Random Forest
classification of metastatic versus non-metastatic samples in different datasets when using GSASs that significantly differed between metastatic
and non-metastatic samples in van de Vijver (C) and Pawitan (D) as the training data.

To demonstrate the reproducibility of this classification
method we expanded our analysis to three additional data-
sets, using the 520 gene sets identified from the van de
Vijver dataset as features to predict metastasis status in
samples from the Loi, Pawitan, and Wang datasets. The
resulting analyses yielded AUCs of 0.62, 0.72, and 0.64, re-
spectively, which indicate relatively accurate cross-dataset
prediction (Figure 5C). To show that these results were
not dependent on features selected from the van de Vijver
dataset we repeated this analysis, this time selecting gene
sets from the Pawitan dataset. The resulting 790 gene sets
that qualified were used as features to classify metastasis
status in samples from the Loi, Pawitan, van de Vijver, and
Wang datasets. This resulted in AUCs of 0.61, 0.77, 0.70,
and 0.63, respectively, again suggesting relatively high per-
formance (Figure 5D). Taken together, our AUCs were
very similar to those achieved in a study done by Chuang
et al that used protein-protein interaction subnetwork ac-
tivity scores from the van de Vijver dataset to predict me-
tastasis status in the Wang dataset, and vice versa [35].
The high performance achieved using GSAS-based classi-
fier features suggests that the GSAS is successfully captur-
ing information about the behavior of the component

genes in a given gene set, allowing GSAS to serve as an
unbiased marker of metastasis risk.

Gene set network analysis and creation of the core gene
set

Our success in using GSASs to characterize the gene
sets of MSigDB led us to seek ways to streamline our
analyses further. We reasoned that the GSASs from a
gene set may be correlated with patient survival due to a
few strong survival-associated genes rather than the
overall behavior of the gene set. To test this, we investi-
gated the shared-gene relationship among the gene sets,
as genetic similarity between gene sets may imply com-
parable prognostic association. We applied a network-
based approach (see Methods), to visualize this relation-
ship between survival-associated gene sets, which would
allow us to better identify collections of gene sets that
have many genes in common (Figure 6). Briefly, each node
in the network represented a gene set that was associated
with survival in the van de Vijver dataset (FDR <0.01),
with an edge present between gene sets if the number of
genes the two gene sets shared divided by the number of
genes in the union of the gene sets was>0.20. We
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identified a module in the network that was enriched in
the robust gene sets we had described earlier (solid box,
Figure 6), which indicated that many of these gene sets
have high gene overlap. To characterize the prognostic
contribution of these shared genes we selected for the
genes that were present in at least 40% of the module gene
sets to create what we termed the module’s core gene set
(Additional file 4).

To understand the biological context of the core gene
set, the gene set’s component genes were inputted into
DAVID Functional Annotation Clustering [30]. The genes
of the core gene set were grouped into clusters relating to
mitotic cell division, microtubule organization, chromo-
somal organization, and DNA replication (Additional

file 5). These cell proliferation-based functions all play a
strong role in cancer progression, indicating that this gene
set may be highly associated with patient survival.

Survival analysis of the core gene set

To characterize the role of the core gene set in breast can-
cer prognosis, we first evaluated the gene set’s ability to
classify samples in the van de Vijver dataset as metastatic
or non-metastatic. We repeated our Random Forest ana-
lysis as described previously, but instead used the core
gene set’s component gene expression values as features.
Our analysis achieved an AUC score of 0.65 (Figure 7A), a
relatively good score for a single gene set, which suggests
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that the core gene set is ably capturing metastasis
information.

We followed up this analysis by using BASE to calcu-
late the GSAS for this gene set in patients from the van
de Vijver dataset. A Cox proportional hazards model
was used to correlate the core gene set’s activity with pa-
tient survival time, and a Kaplan-Meier plot was developed
to depict this analysis by stratifying patients by GSAS
about 0 (Figure 7B). This analysis found that the activity of
the core gene set was significantly associated with patient
survival (p = 7e-9). Furthermore, when the analysis was re-
peated using a multivariate Cox proportional hazards

model that takes into account traditional clinical variables,
including age, tumor size, grade, ER status, and lymph
node metastasis status, the core gene set GSAS remained
significantly predictive (p = 1.6e-4, hr = 1.15) (Figure 7C).
ER status is a traditional marker used in the clinic
when determining breast cancer patient prognosis. The
high association between the core gene set’s GSAS and pa-
tient survival led us to examine whether it could remain
predictive across ER+ and ER- subtypes. The results of the
comparison between ER status and patient survival are
displayed in Figure 7D. This analysis showed that the core
gene set was significantly associated with patient survival
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in patients who were ER+ (p =2e-8), but no significant
correlation was found in patients who were ER- (p > 0.10).
This finding was in line with a previous study by Iwamoto
et al. that found that there were few robust, prognostic
signatures that exist for ER- breast cancers [19].

To show that the high prognostic association of the
core gene set was not localized to the van de Vijver
samples, we expanded our analysis to the remaining
datasets. Figure 8 displays the Kaplan-Meier curves
generated when stratifying the samples of each dataset
by their core gene set GSAS. As with the van de Vijver
dataset, the core gene set GSAS was significantly corre-
lated with breast cancer survival outcome (all p-values <
0.05). This analysis indicated that the core gene set was
capturing important survival-associated processes that
could be used to inform patient prognosis independent
of the cohort from which it came.

Removal of the core gene set genes from other gene sets
disrupts their predictive ability

The strong performance of the core gene set in predicting
patient survival time furthered our reasoning that the
component genes of this gene set were the source of
predictive value in other gene sets on MSigDB. In this
scenario, a gene set’s predictive ability would be dependent
not on the overall behavior of the gene set, but instead on
the number of genes from the core gene set it contains.
We used two approaches to test this hypothesis. In the
first one, genes of the core gene set were removed from all
gene sets downloaded from MSigDB. Their GSASs were
recalculated and correlated with survival using a Cox pro-
portional hazards model. In the second approach, genes of
the core gene set were substituted with random genes so
that the number of genes in each gene set from MSigDB
remained the same (see Methods). The GSASs were then
recalculated and correlated with patient survival as
described in the first method.

The first approach resulted in a reduction in the
number of gene sets significantly associated with sur-
vival (p <0.05) across all datasets. For the Desmedt,
Sotiriou, and Schmidt datasets, the removal of the core
gene set genes resulted in no gene sets being signifi-
cantly associated with breast cancer survival. For the
Loi, Pawitan, van de Vijver, and Wang datasets, the
number of significant gene sets was reduced (n=1159
to n=214 in Loi, n=1758 to n=1087 in Pawitan, n =
1795 to n=1176 in van de Vijver, and n=939 to n=
165 in Wang). The results from the second approach
were slightly more dramatic. When the core gene set
genes in each gene set were substituted with random
genes, the Desmedt, Sotiriou, and Schmidt datasets
again had no gene sets that were significantly associ-
ated with breast cancer survival while the Loi, Pawitan,
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van de Vijver, and Wang datasets saw a reduction in
the number of significant gene sets (n=1159 to n=
175 in Loi, n = 1758 to n = 1068 in Pawitan, n = 1795 to
n=1164 in van de Vijver, and n=939 to n=149 in
Wang) (Table 1). Taken together, these results suggest
that many of the gene sets on MSigDB derive their
prognostic value from the component genes of the
core gene set.

Discussion

Currently, the use of predefined gene signatures for
informing breast cancer prognosis is dependent on the
absolute expression levels of the signature’s component
genes in a patient. The assumption is that the signature’s
component gene expression levels, either individually or
combined, can provide meaningful information about
the patient’s expected survival time. However, due to the
genetic heterogeneity of cancer, this assumption may not
always hold true, resulting in decreased prognostic ac-
curacy. Additionally, many predefined gene signatures
have been developed by selecting for genes whose ex-
pression values are statistically correlated with cancer
survival in a single dataset. The relatively small sample
size of patients used in these experiments may provide
an inaccurate representation of cancer at a global level,
leading to signatures that are predictive in one dataset,
but not predictive when applied to others.

The scoring system we have proposed here measures
the activity of a gene set based on the component genes’
relative position in a list of genes ranked by a patient’s
expression levels. This method is beneficial for numer-
ous reasons. First, it provides a medium to compare
gene set activity levels for samples across datasets. In the
context of survival analyses, the system allows for the
identification of robust gene sets based on the associ-
ation of a gene set’s GSASs with survival across multiple
datasets. Additionally, the score can account for different
subsets of a gene set being active. For example, in a
pathway-based gene set, one sample that has a slight cu-
mulative increase in the overall expression levels of the
pathway genes could potentially have the same score as
a sample with a sharp increase in the expression levels
of only the downstream genes. In this way, the GSAS
mitigates the overfitting problem associated with com-
paring individual gene set component gene expression
levels. Furthermore, the activity score accounts for the
effect of gene-gene interactions and potential redundant
expression changes. Tumorigenesis typically begins with
clonal expansion of cells that have gained a set of driver
mutations. As the regulatory mechanisms in the cells are
disrupted, tumor cells can pick up passenger mutations
that may obscure the causative mutations in a gene expres-
sion study. The GSAS can illuminate which mechanisms
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Table 1 Survival-associated gene sets before and after
removal of the core gene set

p <0.05 Removed Substituted

Desmedt 471 0 0

Loi 1159 214 175

Pawitan 1758 1087 1068
Schmidt 817 0 0

Sotiriou 894 0 0

van de Vijver 1795 1176 1164

Wang 939 165 149

For all datasets, the number of survival-associated gene sets (p < 0.05, Cox
proportional hazards model) before (Column 1) and after removal of the core
gene set (Column 2) or substitution of the genes of the core gene set with
random genes (Column 3).

are important in driving cancer growth by measuring ex-
pression change at a functional gene set level, as opposed
to an individual gene level, where gene-gene interactions
complicate the information that can be derived based on
expression data. This feature manifests itself in our classifi-
cation of non-metastatic versus metastatic samples. By
using gene sets with differential activity scores between
non-metastatic and metastatic samples to predict metasta-
sis status, we achieve clinically relevant accuracy scores
that are reproducible across datasets.

The gene set overlap network analysis we performed
allowed for the identification of a novel gene set, re-
ferred to as the core gene set, that was enriched in pro-
liferative functions. This gene set was made up of genes
that were shared across many robustly predictive gene
sets. Survival analysis using the GSAS for this gene set
found that the core gene set was significantly associated
with survival with a hazard ratio > 1 in all seven datasets
in which it was tested. These findings were in agreement
with a previous study that claimed that increased prolif-
erative potential of a cell could result in more severe
stages of cancer [22]. After removing the core gene set’s
component genes from the gene sets on MSigDB we
found that many of the survival-associated gene sets
were no longer predictive. This suggests that a gene set’s
prognostic ability is instead based on the number of core
genes it contains. This is of great interest, as it is con-
trary to the common belief that gene sets derive their
predictive ability from the process or pathway they rep-
resent. Based on our findings, the core gene set may rep-
resent a series of cancer driver genes that directly
impact a patient’s cancer severity. In this scenario, the
core gene set could also represent a list of potential drug
targets. Because high core gene set activity is associated
with worse prognosis, drugs that reduce the expression
levels of these genes to near normal levels could have
the potential to improve patient survival time.
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Breast cancer is a molecularly heterogeneous disease,
with no two cases of breast cancer being quite the same.
Molecular subtypes of breast cancer have been identified
based on the genetic profiles of many different patients
to help elucidate this heterogeneity [36]. While our
GSAS analyses did include multivariate Cox propor-
tional hazards models that account for estrogen receptor
status and lymph node metastasis in the van de Vijver
dataset, we did not stratify patients by molecular subtype
of breast cancer when comparing good and poor prog-
nosis groups. Stratifying samples by molecular subtype
before performing survival analyses may increase the
resolution between good and poor prognosis groups,
yielding new gene sets that are predictive of breast can-
cer survival in a specific subtype. These analyses could
result in a unique set of significant signatures for each
subtype, as well as a unique core gene set enriched for
functions specific to that subtype.

Going forward, we believe the GSAS survival analysis
we have detailed could have applications to cancers out-
side of breast cancer. For example, this analysis could be
used to reveal the prognostic gene sets in other cancers.
Identifying survival-associated gene sets in a pan-cancer
manner could shed light on the links between cancers
while also highlighting differences in their molecular
composition. Additionally, the GSAS survival analysis
could be used to apply the core gene set detailed in this
paper to patient cohorts suffering from other cancer
types. This analysis would further characterize the core
gene set as a list of cancer driver genes, and would allow
us to assess whether its prognostic significance is univer-
sal or restricted only to breast cancer.

Conclusion

This paper presents a powerful method to correlate
gene set activity with patient survival. Because the
GSAS scoring system is based on relative gene expres-
sion as opposed to absolute gene expression, it can be
used to compare survival significance across datasets,
identify robustly prognostic gene sets, and predict me-
tastasis status in samples in an accurate and reprodu-
cible manner. Additionally, the core gene set analysis
detailed in this paper indicates that only a small collec-
tion of genes drive survival prediction in breast cancer.
This suggests that the predictive ability of a given gene
set is strongly dependent on the number of core gene
set genes present in the gene set. As more gene sets are
discovered and tools for measuring gene expression im-
prove, we are hopeful that the association between pa-
tient survival and gene set activity level will become
even more distinct, allowing for improved prognostic
prediction and clinical characterization.
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