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We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA)
suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of
variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations
to predefined categories, (2) gives factorial maps displaying observations and categories, and (3) optimally assigns observations
to categories. MUSUBADA handles cases with more variables than observations and can project portions of the data table (e.g.,
subtables, which can represent participants or ROIs) on the factorial maps. Therefore MUSUBADA can analyze datasets with
different voxel numbers per participant and, so does not require spatial normalization. MUSUBADA statistical inferences are
implemented with cross-validation techniques (e.g., jackknife and bootstrap), its performance is evaluated with confusion matrices
(for fixed and random models) and represented with prediction, tolerance, and confidence intervals. We present an example where
we predict the image categories (houses, shoes, chairs, and human, monkey, dog, faces,) of images watched by participants whose
brains were scanned. This example corresponds to a DA question in which the data table is made of subtables (one per subject)
and with more variables than observations.

1. Introduction

A standard problem in neuroimaging is to predict category
membership from a scan. Called “brain reading” by Cox
and Savoy [1], and more generally multi-voxel pattern anal-
ysis (MVPA, for a comprehensive review see, e.g., [2]), this
approach is used when we want to “guess” the type of cat-
egory of stimuli processed when a participant was scanned
and when we want to find the similarity structure of
these stimulus categories (for a review, see, e.g., [3]). For
datasets with the appropriate structure, this type of problem
is addressed in multivariate analysis with discriminant
analysis (DA). However, the structure of neuroimaging data

precludes, in general, the use of DA. First, neuroimaging
data often comprise more variables (e.g., voxels) than
observations (e.g., scans). In addition, in the MVPA frame-
work (see, e.g., the collection of articles reported in [2]),
f mri data are collected as multiple scans per category of
stimuli and the goal is to assign a particular scan to its
category. These f mri data do not easily fit into the standard
framework of DA, because DA assumes that one row is one
observation (e.g., a scan or a participant) and one column
is a variable (e.g., voxel). This corresponds to designs in
which one participant is scanned multiple times or multiple
participants are scanned once (assuming that the data are
spatially normalized—e.g., put in Talairach space). These
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designs can fit PET or SPECT experiments but do not fit
standard f mri experiments where, typically, multiple partic-
ipants are scanned multiple times. In particular, DA cannot
accommodate datasets with different numbers of variables
per participant (a case that occurs when we do not use spatial
normalization). Finally, statistical inference procedures of
DA are limited by unrealistic assumptions, such as normality
and homogeneity of variance and covariance.

In this paper, we present a new discriminant analy-
sis method called Multiple Subject Barycentric Discrim-
inant Analysis (MUSUBADA) which implements a DA-
like approach suitable for neuroimaging data. Like stan-
dard discriminant analysis, MUSUBADA is used to assign
observations to predefined categories and gives factorial
maps in which observations and categories are represented
as points, with observations being assigned to the closest
category. But, unlike DA, MUSUBADA can handle datasets
with multiple participants when each participant provides a
different number of variables (e.g., voxels). Each participant
is considered as a subtable of the whole data table and the
data of one participant can also be further subdivided into
more subtables which can constitute, for example, regions
of interest (ROIs). MUSUBADA processes these subtables by
projecting portions of the subtables on the factorial maps.
Consequently, MUSUBADA does not require spatial nor-
malization in order to handle “group analysis.” In addition,
MUSUBADA can handle datasets with a number of variables
(i.e., voxels) larger than the number of observations.

We illustrate MUSUBADA with an example in which
we predict the type of images that participants’ were
watching when they were scanned. For each participant, one
anatomical ROI was used in the analysis. Because the ROIs
were anatomically defined, the brain scans were not spatially
normalized and the corresponding number of voxels, as well
as their locations, were different for each participant.

We decided to use hand-drawn ROIs, we could also have
use functional localizers as these are still widely used (and
constitute a valid approach as long as the localizer is not
confounded with the experimental tasks). Hand drawing
these ROIs is obviously very time consuming and could
restrict the use of our technique to only small N studies
(or to very dedicated teams) and therefore could also make
studies harder to replicate. Fortunately, there are ways of
obtaining ROIs without drawing them by hand. Specifically,
as an alternative to manual tracing and functional localizers,
recent methods have been developed to choose ROIs for
each subject which are both automatic and a priori. These
methods take labels from a standard anatomical atlas such
as AAL [4], Tailarach [5], or Brodman [6] and warp
these labels to coordinates within each subject’s anatomical
space. The anatomical coordinates are then downsampled
to the subject’s functional space. These steps can either be
completely automated via extensions to standard software,
such as IBASPM [7] or by reusing built-in tools, such as
the linear FLIRT [8] and nonlinear FNIRT [9] of FSL.
Because standard single-subject atlases do not account for
between-subject variation [10], it may be preferable to use
probabilistic atlases determined on multiple subjects (e.g.,

[11]). As an alternative to anatomical atlases entirely, stereo-
tactic coordinates can also be taken from a meta-analysis
and warped into coordinates within the subject’s functional
space. Although meta-analyses are generally performed for
the task at hand, methods exist for automating even meta-
analyses using keywords in published articles (see, e.g.,
NeuroSynth: [12]).

1.1. Overview of the Method. MUSUBADA comprises two
steps: (1) barycentric discriminant analysis (BADA) analyzes
a data table in which observations (i.e., scans) are rows and
in which variables (i.e., voxels) are columns and where each
participant is represented by a subset of the voxels (i.e., one
participant is a “subtable” of the whole data table), (2) and
projection of the subtables representing the participants on
the solution computed by BADA (this is the “MUSU” step
in MUSUBADA). In addition, the subtable representing one
participant could also be further subdivided into subtables
representing, for example, the participant’s ROIs (the ROIs
can differ with the participants).

BADA generalizes discriminant analysis and, like DA, it is
performed when measurements made on some observations
are combined to assign observations to a-priori defined
categories. BADA is, actually, a class of methods which all rely
on the same principle: each category of interest is represented
by the barycenter of its observations (i.e., the weighted
average; the barycenter is also called the center of gravity of
the observations of a given category), and, then, a generalized
principal component analysis (GPCA) is performed on the
category by variable matrix. This analysis gives a set of
discriminant factor scores for the categories and another set
of factor scores for the variables. The original observations
are then projected onto the category factor space, providing a
set of factor scores for the observations. The distance of each
observation to the set of categories is computed from the
factor scores and each observation is assigned to the closest
category.

The comparison between the a-priori and a-posteriori
category assignments is used to assess the quality of the
discriminant procedure. When the quality of the model is
evaluated for the observations used to build the model, we
have a fixed effect model. When we want to estimate the
performance of the model for new or future observations,
we have a random effect model. In order to estimate the
quality of the random effect model, the analysis is performed
on a subset of the observations called the training set and
the predictive performance is evaluated with a different set
of observations called the testing set. A specific case of
this approach is the “leave-one-out” technique (also called
jackknife) in which each observation is used, in turn, as
the testing set whereas the rest of the observations play
the role of the training set. This scheme has the advantage
of providing an approximately unbiased estimate of the
generalization performance of the model [13]. The quality
of the discrimination can also be evaluated with an R2-type
statistic which expresses the proportion of the data variance
explained by the model. Its significance can be evaluated with
standard permutation tests.
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The stability of the discriminant model can be assessed
by a resampling strategy such as the bootstrap (see [13,
14]). In this procedure, multiple sets of observations are
generated by sampling with replacement from the original set
of observations, and by computing new category barycenters,
which are then projected onto the original discriminant
factor scores. For convenience, the confidence intervals of
the barycenters can be represented graphically as a confidence
ellipsoid that encompasses a given proportion (say 95%)
of the barycenters. When two category ellipsoids do not
intersect, these groups are significantly different.

The problem of multiple tables corresponds to MUSUB-
ADA per se and it is implemented after the BADA step. In the
MUSUBADA step, each subtable is projected onto the factor
scores computed for the whole data table. These projections
are also barycentric as their average gives the factor scores
of the whole table. This last step integrates other multitable
techniques such as multiple factor analysis or STATIS [15–
19] which have also been used in brain imaging (see, e.g.,
for recent examples [20–22]). In addition to providing
subtable factor scores, MUSUBADA evaluates and represents
graphically the importance (often called the contribution) of
each subtable to the overall discrimination. A sketch of the
main steps of MUSUBADA is shown in Figure 1.

MUSUBADA incorporates BADA which, itself, is a
GPCA performed on the category barycenters and as such
MUSUBADA implements a discriminant analysis version
of different multivariate techniques such as correspondence
analysis, biplot analysis, Hellinger distance analysis, and
canonical variate analysis (see, e.g., [23–26]). In fact, for
each specific type of GPCA, there is a corresponding version
of BADA. For example, when the GPCA is correspondence
analysis, this gives the most well-known version of BADA:
discriminant correspondence analysis (DICA, sometimes
also called correspondence discriminant analysis; see [23,
27–31]).

2. Notations

Matrices are denoted with bold uppercase letters (i.e.,
X) with generic element denoted with the corresponding
lowercase italic letter (i.e., x). The identity matrix is denoted
I. Vectors are denoted with bold lowercase letter (i.e., b) with
generic element denoted with the corresponding lower case
italic (i.e., b).

The original data matrix is an N observation by J
variables matrix denoted X. Prior to the analysis, the matrix
X can be preprocessed by centering (i.e., subtracting the
column mean from each column), by transforming each
column into a Z-score, or by normalizing each row so that
the sum of its elements or the sum of its squared elements
is equal to one (the rationale behind these different types
of normalization is discussed later on). The observations in
X are partitioned into I a-priori categories of interest with
Ni being the number of observations of the ith category
(and so

∑I
i Ni = N). The columns of matrix X can be

arranged in K a priori subtables. The numbers of columns
of the kth subtable are denoted Jk (and so

∑K
k Jk = J).

So, the matrix X can be decomposed into I by K blocks
as

X =

1 · · · k · · · K

1

...

i

...

I

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1,1 · · · X1,k · · · X1,K

...
. . .

...
. . .

...

Xi,1 · · · Xi,k · · · Xi,K

...
. . .

...
. . .

...

XI ,1 · · · XI ,k · · · XI ,K

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

2.1. Notations for the Categories (Rows). We denote by Y
the N by I design (aka dummy) matrix for the categories
describing the rows of X: yn,i = 1 when row n belongs to
category and i, yn,i = 0, otherwise. We denote by m the N
by 1 vector of masses for the rows of X and by M the N by
N diagonal matrix whose diagonal elements are the elements
of m (i.e., using the diag operator which transforms a vector
into a diagonal matrix, we have M = diag{m}). Masses are
positive numbers and it is convenient (but not necessary) to
have the sum of the masses equal to one. The default value
for the mass of each observation is often 1/N . We denote by
b the I by 1 vector of masses for the categories describing the
rows of X and by B the I by I diagonal matrix whose diagonal
elements are the elements of b.

2.2. Notations for the Subtables (Columns). We denote by Z
the J by K design matrix for the subtables from the columns
of X: zj,k = 1 if column j belongs to subtable k, zj,k = 0,
otherwise. We denote by w the J by 1 vector of weights for
the columns of X and by W the J by J diagonal matrix
whose diagonal elements are the elements of w. We denote
by c the K by 1 vector of weights for the subtables of X and
by C the K by K diagonal matrix whose diagonal elements
are the elements of c. The default value for the weight of
each variable is 1/J , a more general case requires only W
to be positive definite and this includes nondiagonal weight
matrices.

3. Barycentric Discriminant Analysis (BADA)

The first step of BADA is to compute the barycenter of each
of the I categories describing the rows. The barycenter of a
category is the weighted average of the rows in which the
weights are the masses rescaled such that the sum of the
weights for each category is equal to one. Specifically, the I
by J matrix of barycenters, denoted R, is computed as

R = diag
{

Y�M1
}−1Y�MX, (2)

where 1 is an N by 1 vector of 1 s and the diagonal matrix
diag{YM1}−1 rescales the masses of the rows such that their
sum is equal to one for each category.

3.1. Masses and Weights. The type of preprocessing and the
choice of the matrix of masses for the categories (B) and the
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GPCA

Sub-table projection

Confidence intervals

Tolerance and prediction intervals

∑

Resample 1000 times, project as supplementary elements and trim to 95%

Figure 1: The different steps of BADA.

matrix of weights for the variables (W) is crucial because
these choices determine the type of GPCA used.

For example, discriminant correspondence analysis is
used when the data are counts. In this case, the preprocessing
is obtained by transforming the rows of R into relative
frequencies, and by using the relative frequencies of the
barycenters as the masses of the rows and the inverse of
the column frequencies as the weights of the variables.
Another example of GPCA, standard discriminant analysis,
is obtained when W is equal to the inverse of the within
group variance-covariance matrix (which can be computed
only when this matrix is full rank). Hellinger distance
analysis (also called “spherical factorial analysis”; [32–35]) is
obtained by taking the square root of the relative frequencies
for the rows of R and by using equal weights and masses for
the matrices W and M. Interestingly, the choice of weight
matrix W is equivalent to defining a generalized Euclidean
distance between J-dimensional vectors [32]. Specifically, if
xn and xn′ are two J-dimensional vectors, the generalized
Euclidean squared distance between these two vectors is

d2
W(xn, xn′) = (xn − xn′)

ᵀW(xn − xn′). (3)

3.2. GPCA of the Barycenter Matrix. Essentially, BADA boils
down to a GPCA of the barycenter matrix R under the con-
straints provided by the matrices B (for the I categories) and
W (for the columns). Specifically, the GPCA is implemented
by performing a generalized singular value decomposition of
matrix R [23, 26, 36, 37], which is expressed as

R = PΔQ� with P�BP = Q�WQ = I, (4)

where Δ is the L by L diagonal matrix of the singular values
(with L being the number of nonzero singular values), and P

(resp., Q) being the I by L (resp., J by L) matrix of the left
(resp., right) generalized singular vectors of R.

3.3. Factor Scores. The I by L matrix of factor scores for the
categories is obtained as

F = PΔ = RWQ. (5)

These factor scores are the projections of the categories
on the GPCA space and they provide the best separation
between the categories because they have the largest possible
variance. In order to show this property, recall that the
variance of the columns of F is given by the square of
the corresponding singular values (i.e., the “eigen-value”
denoted λ) and are stored in the diagonal matrix Λ). This
can be shown by combining (4) and (5) to give

F�BF = ΔP�BPΔ = Δ2 = Λ. (6)

Because the singular vectors of the SVD are ordered by
size, the first factor extracts the largest possible variance, the
second factor extracts the largest variance left after the first
factor has been extracted, and so forth.

3.3.1. Supplementary Elements. The N rows of matrix X can
be projected (as “supplementary” or “illustrative” elements)
onto the space defined by the factor scores of the barycenters.
Note that the matrix WQ from (5) is a projection matrix.
Therefore, the N by L matrix H of the factor scores for the
rows of X can be computed as

H = XWQ. (7)

These projections are barycentric, which means that the
weighted average of the factor scores of the rows of a category
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gives the factors scores of this category. This property is
shown by first computing the barycenters of the row factor
scores as (cf. (2)) as

H = diag{YM1}−1YMH, (8)

then plugging in (7) and developing. Taking this into
account, (5) gives

H = diag{YM1}−1YMXWQ = RWQ = F. (9)

3.4. Loadings. The loadings describe the variables of the
barycentric data matrix and are used to identify the variables
important for the separation between the categories. As for
standard PCA, there are several ways of defining the loadings.
The loadings can be defined as the correlation between the
columns of matrix R and the factor scores. They can also be
defined as the matrix Q or as variable “factor scores” which
are computed as

G = QΔ. (10)

(Note that Q and G differ only by a normalizing factor).

4. Quality of the Prediction

The performance, or quality of the prediction of a dis-
criminant analysis, is assessed by predicting the category
membership of the observations and by comparing the
predicted with the actual category membership. The pattern
of correct and incorrect classifications can be stored in a
confusion matrix in which the columns represent the actual
categories and in which the rows represent the predicted
categories. At the intersection of a row and a column is the
number of observations from the column category assigned
to the row category.

The performance of the model can be assessed for the
observations (e.g., scans or participants) actually used to
compute the categories (the set of observations used to
generate the model is sometimes called the training set). In
this case, the performance of the model corresponds to a fixed
effect model because this assumes that a replication of the
experiment would use the same observations (i.e., the same
participants and the same stimuli). In order to assess the
quality of the model for new observations, its performance,
however, needs to be evaluated using observations that
were not used to generate the model (the set of “new
observations” used to evaluate the model is sometimes called
the testing set). In this case, the performance of the model
corresponds to a random effect model because this assumes
that a replication of the experiment would use the different
observations (i.e., different participants and stimuli).

4.1. Fixed Effect Model. The observations in the fixed effect
model are used to compute the barycenters of the categories.
In order to assign an observation to a category, the first
step is to compute the distance between this observation
and all I categories. Then, the observation is assigned to the
closest category. Several possible distances can be chosen, but

a natural choice is the Euclidean distance computed in the
factor space. If we denote by hn the vector of factor scores for
the nth observation, and by fi the vector of factor scores for
the ith category, then the squared Euclidean distance between
the nth observation and the ith category is computed as

d2(hn, fi) = (hn − fi)
�(hn − fi). (11)

Obviously, other distances are possible (e.g., Mahalanobis
distance), but the Euclidean distance has the advantage of
being “directly read” on the map.

4.1.1. Tolerance Intervals. The quality of the category assign-
ment of the actual observations can be displayed using
tolerance intervals. A tolerance interval encompasses a given
proportion of a sample or a population. When displayed in
two dimensions, these intervals have the shape of an ellipse
and are called tolerance ellipsoids. For BADA, a category
tolerance ellipsoid is plotted on the category factor score
map. This ellipsoid is obtained by fitting an ellipse which
includes a given percentage (e.g., 95%) of the observations.
Tolerance ellipsoids are centered on their categories. The
overlap of the tolerance ellipsoids of two categories reflects
the proportion of misclassifications between these two
categories for the fixed effect model.

4.2. Random Effect Model. The observations of the random
effect model are not used to compute the barycenters but
are used only to evaluate the quality of the assignment of
new observations to categories. A convenient variation of
this approach is “leave-one-out” (aka jackknife) approach:
Each observation is taken out from the dataset and, in turn,
is then projected onto the factor space of the remaining
observations in order to predict its category membership.
For the estimation to be unbiased, the left-out observation
should not be used in any way in the analysis. In particular,
if the data matrix is preprocessed, the left-out observation
should not be used in the preprocessing. So, for example, if
the columns of the data matrix are transformed into Z scores,
the left-out observation should not be used to compute the
means and standard deviations of the columns of the matrix
to be analyzed, but these means and standard deviations will
be used to compute the Z-score for the left-out observation.

The assignment of a new observation to a category
follows the same procedure as for an observation from the
fixed effect model. The observation is projected onto the
original category factor scores and is assigned to the closest
category. Specifically, we denote by X−n the data matrix
without the nth observation, and by xn the 1 by J row vector
representing the nth observation. If X−n is preprocessed (e.g.,
centered and normalized), the preprocessing parameters
will be estimated without xn (e.g., the mean and standard
deviation of X−n are computed without xn) and xn will be
preprocessed with the parameters estimated for X−n (e.g.,
xn will be centered and normalized using the means and
standard deviations of the columns of X−n). Then, the
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Figure 7: Partial inertias of the participants subtables. The size of a square is proportional to the overall contribution of the participant.
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Figure 8: Three interesting participants (a) participant 7, (b) participant 9, and (c) participant 6 (cf. Figure 7). All participants show the
same overall configuration, but some participants display a clearer effect.

accommodate more sophisticated designs than the one illus-
trated here. For example, MUSUBADA could analyze design
for which several ROIs are defined per participant (see, e.g.,
[57]), or different categories of participants (e.g., old versus
young participants as in [58]). Finally, because MUSUBADA
incorporates inferential components, it complements other
popular approaches such as partial least squares [53, 59]
which are widely used for brain imaging data.
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