Corneal Replication Is an Interferon Response-Independent Bottleneck for Virulence of Herpes Simplex Virus 1 in the Absence of Virion Host Shutoff

Tracy J. Pasieka
Washington University School of Medicine

Vineet D. Menachery
Washington University School of Medicine

Pamela C. Rosato
Dartmouth College

David A. Leib
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the [Infectious Disease Commons](https://digitalcommons.dartmouth.edu/infectiousdisease), [Medical Microbiology Commons](https://digitalcommons.dartmouth.edu/medicalmicrobiology), [Ophthalmology Commons](https://digitalcommons.dartmouth.edu/ophthalmology), and the [Virology Commons](https://digitalcommons.dartmouth.edu/virology)

Recommended Citation

https://digitalcommons.dartmouth.edu/facoa/1231
Corneal Replication Is an Interferon Response-Independent Bottleneck for Virulence of Herpes Simplex Virus 1 in the Absence of Virion Host Shutoff

Tracy Jo Pasieka, Vineet D. Menachery, Pamela C. Rosato, and David A. Leib

Department of Ophthalmology and Visual Sciences and Program in Immunology, Washington University School of Medicine, St. Louis, Missouri, USA, and Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA

Herpes simplex viruses lacking the virion host shutoff function (Δvhs) are avirulent and hypersensitive to type I and type II interferon (IFN). In this study, we demonstrate that even in the absence of IFN responses in AG129 (IFN-αβγR−/−) mice, Δvhs remains highly attenuated via corneal infection but is fully virulent via intracranial infection. The data demonstrate that the interferon-independent inherent replication defect of Δvhs has a significant impact upon peripheral replication and neuroinvasion.

Herpes simplex virus (HSV) is a common human pathogen and a significant source of morbidity (33). Severe disease and mortality are rare in most populations, occurring most frequently in immunocompromised individuals (24, 26). Those lacking Stat1 or having interferon (IFN) signaling defects are among the most susceptible, especially to central nervous system (CNS) infection (3, 7). IFN responses represent a critical early barrier to infection, and in common with all viruses, HSV encodes a variety of functions that counter the antiviral effects of IFN (18). One such function pertinent to this study is virion host shutoff (vhs), encoded by the UL41 gene of HSV (25). vhs is a tegument-derived endoribonuclease (13, 31) that is conserved among neurotropic herpesviruses (2). Consistent with the ability of vhs to destabilize a broad spectrum of mRNAs (30), vhs modulates various aspects of the host immune response, including IFN responses, dendritic cell maturation, antigen presentation, and cytokine/chemokine elicitation (4, 6, 19, 32). Correspondingly, the replication and virulence of HSV strains lacking vhs is significantly reduced in wild-type mice but significantly increased in mice lacking IFN responses (1, 20, 23, 28). While vhs is critical for HSV replication in vivo, its impact in cell culture varies greatly by cell type (5). The growth deficits observed in certain cells were correlative with induction of stress granules (indicating stalled translation) and decreased accumulation of viral late genes. These inherent in vitro growth defects were shown to be independent of IFN responses and consistent with a cell type-specific growth deficit (5). In this study, we sought to examine the role of vhs in promoting viral replication and virulence in vivo in the absence of type I and type II IFN responses. Previous studies of a vhs-deleted HSV-1 strain (UL41NHB [28], hereinafter referred to as Δvhs) in Stat1−/− mice showed incomplete restoration of growth and virulence relative to those of a wild-type (KOS) virus (23). While these Stat1−/− mice were highly susceptible to HSV infection, they maintain some persistent IFN-dependent responses that affect viral growth and pathogenesis (21), possibly explaining the incomplete restoration of growth and virulence to Δvhs. Testing Δvhs in type I/II IFN receptor knockout mice (AG129) therefore affords direct analysis of the role of IFN responses in controlling Δvhs replication and virulence and allows the examination of IFN-independent defects of Δvhs replication in vivo.

To assess the extent to which the replication of Δvhs might be inherently limited in an IFN-independent fashion in cells derived from AG129 mice, we compared the replication of Δvhs to that of wild-type KOS using multistep growth analyses at a multiplicity of infection (MOI) of 0.01 in bone marrow-derived dendritic cells (BMDCs) from wild-type (strain 129) and AG129 mice as previously described (17). BMDCs are a challenging environment for HSV replication, especially for viruses with engineered deletions in virulence genes (8, 9). Consistent with this, the replication of Δvhs was significantly reduced (P < 0.0005 at 48 h) in wild-type (strain 129/SvEv mice) BMDCs relative to the replication of KOS virus in these cells (Fig. 1A and B). In AG129 BMDCs, both Δvhs and KOS virus showed significantly more replication (P < 0.005 at 48 h) than in wild-type BMDCs, but the replication of Δvhs was not restored to the levels observed for KOS (P < 0.002 at 48 h). This is in contrast to the restoration of Δvhs replication observed in mouse embryonic fibroblasts (MEFs) derived from AG129 mice (22).

Previous in vivo work showed that vhs-deficient virus replication was significantly reduced in the wild-type mouse cornea (27, 28), and replication was only partially restored in mice lacking Stat1 (23). We therefore wished to examine the replication of Δvhs in the corneas of AG129 mice using methods previously described (28). Mice were infected with 2 × 106 PFU per scarified eye of KOS or Δvhs, and replication measured by eye swab assays from day 1 through 7 postinfection (Fig. 1C and D). The replication of both KOS and Δvhs was significantly enhanced (P < 0.02 at 3 days) in AG129 mice relative to that in wild-type mice, although the increased replication of Δvhs in AG129 corneas was not restored to the levels observed for KOS in these IFN-deficient mice. These data suggested that while IFN was limiting to the replication of both viruses, the replication defect of Δvhs observed in both BMDCs and corneas was inherent to vhs deficiency and yet independent of IFN.

To further assess the impact of vhs on the tropism and pathogen-
esis of HSV-1 in AG129 mice, we performed bioluminescence imag-
ing as previously described (14–16, 21). The viruses used were KOS/
dlux/oriL (29) (hereinafter referred to KOSdlux) and a new virus,
\(/H9004\) vhsdlux, in which the firefly luciferase-expressing cassette described
previously for making KOSdlux was inserted into the UL49.5 locus
(29) of the vhs-deficient mutant UL41NHB using homologous re-
combination (28). Following corneal infection with KOSdlux, as ex-
pected, the previously published pattern of bioluminescence was ob-
served (15), with the appearance of light signals in cervical lymph
nodes by day 2 and increasingly strong signals in nodes and livers

FIG 1 Replication of KOS and \(/H9004\) in bone marrow-derived dendritic cells (BMDCs) and corneas of wild-type and IFN-deficient mice, and their virulence and spread following corneal infection. (A) Multiple-step growth curve of KOS in BMDCs derived from either wild-type or AG129 mice. (B) Multiple-step growth curve of \(/H9004\) in BMDCs derived from either wild-type or AG129 mice. (C) Replication of KOS in scarified corneas of wild-type or AG129 mice following inoculation of \(2 \times 10^6 \) PFU per eye. (D) Replication of \(/H9004\) in scarified corneas of wild-type or AG129 mice following inoculation of \(2 \times 10^6 \) PFU per eye. No corneal titers are shown for KOS in AG129 mice beyond day 5 due to mortality. (E) Tropism and spread of KOSdlux and \(/H9004\)dlux shown by bioluminescence imaging following corneal infection with \(2 \times 10^6 \) PFU per eye. Living mice were imaged daily by IVIS (Caliper Lifesciences) following anesthesia and injection
of 150 \(\mu \)g/g D-luciferin. Images were formatted on an identical photon flux scale as \(10^3 \) photons/s/sr/cm². No images are shown for KOSdlux in AG129 mice beyond day 4 due to mortality. Data shown are derived from or representative of at least 2 experiments.
from day 3 to day 4 (Fig. 1E). Mortality precluded imaging of the KOSdlux-infected mice on and beyond day 5. Overall, ∆vhsdlux showed a tropism similar to that of KOSdlux in AG129 mice, but peak signals in all tissues were delayed by 1 day and attenuated approximately 200-fold. Interestingly, the AG129 mice cleared the ∆vhs visceral infection by day 7 (Fig. 1E and data not shown) and yet began to show mortality at and beyond this time point (Fig. 2A). Taken together, these data demonstrate, both in vitro and in vivo, the strong impact of IFN-independent defects on the replication of a vhs-deficient HSV-1 strain in BMDCs and peripheral tissues.

One possible explanation for these data is that the cornea serves as an IFN-independent bottleneck to ∆vhs infection and that, once ∆vhs gains access to the CNS, it is able to replicate robustly and cause mortality. To test this possibility further, we examined the virulence and replication of KOS and ∆vhs in the brain following corneal and intracerebral infection, as previously described (28). Observation of wild-type and AG129 mice infected via the cornea revealed a striking difference in survival following infection with KOS or ∆vhs. All wild-type mice survived infection with either virus (data not shown). KOS-infected AG129 mice (13/13) all died synchronously on day 5, while the ∆vhs-infected mice had a median survival of 11 days, with a more gradual mortality (42/47) out to day 21 (Fig. 2A). Despite the significantly (P < 0.0001) longer survival time for ∆vhs-infected mice, this high degree of lethality was unexpected given the significant attenuation of ∆vhs for corneal replication in these mice relative to the level of replication of KOS (Fig. 1C and D). This also contrasted strongly with ∆vhs infection in corneas of Stat1−/− mice in which ~90% of mice survived to day 21 (20, 23). When wild-type mice were intracerebrally infected (28) with 2 × 10⁶ PFU, KOS was significantly more virulent (6% survival) than ∆vhs (79% survival; data not shown) in wild-type mice. In contrast, in AG129 mice, the virulence of ∆vhs was indistinguishable from that of KOS (P > 0.17), even following infection with only 1 × 1⁰₄ or 1 × 1⁰³ PFU (Fig. 2B). To assess this further, we examined virus replication in brain stems in wild-type and AG129 mice following corneal (2 × 1⁰⁴ PFU) or intracerebral (1 × 1⁰³ PFU) infection with either KOS or ∆vhs (Fig. 3). Both corneal and intracerebral infection of wild-type mice resulted in detectable titers (≤8 × 1⁰³ PFU) of KOS per brain stem, while ∆vhs remained mostly undetectable (Fig. 3A and B). In AG129 mice following corneal infection, KOS was readily detectable by day 3 in the brain stem and reached >1 × 1⁰⁶ PFU per brain on day 5, when 100% mortality was seen (Fig. 3C). Following corneal infection with ∆vhs, increasing brain stem titers were observed on days 3 to 5, with titers of >1 × 1⁰⁵ on day 7, at which time the first mortality was observed (Fig. 2A). For all data shown in Fig. 3B and C, the replication differences between KOS and ∆vhs were statistically significant (P values ranging from 0.017 to 7 × 10⁻⁷). Intracerebral infection of AG129 mice with 100 PFU of KOS or ∆vhs resulted in high (10⁵ to 10⁶ PFU/brain stem) titers on days 3 and 5 (Fig. 3D). These titers were statistically indistinguishable between KOS and ∆vhs (P = 0.28) on day 3. Although significant differences between these viruses were seen on day 5 (P = 0.002), the 10-fold difference in KOS and ∆vhs titers in this tissue is in stark

FIG 2 Survival of wild-type and AG129 mice following corneal or intracerebral (ic) challenge with KOS and ∆vhs viruses. (A) Survival of AG129 mice following corneal challenge with 2 × 1⁰⁶ PFU of either KOS or ∆vhs. (B) Survival of AG129 mice following intracerebral challenge with 1 × 1⁰³ PFU or 1 × 1⁰⁵ PFU of either KOS or ∆vhs. Results are derived from at least 2 independent experiments for each panel.

FIG 3 Virus replication in brain stems in wild-type and AG129 mice following corneal or intracerebral (ic) infection with either KOS or ∆vhs viruses. “ND” indicates virus not detected. (A) Brain stem titers following corneal infection of wild-type mice with 2 × 1⁰⁵ PFU KOS or ∆vhs per eye. (B) Brain stem titers following intracerebral infection of wild-type mice with 2 × 1⁰⁵ PFU KOS or ∆vhs. (C) Brain stem titers following corneal infection of AG129 mice with 2 × 1⁰⁶ PFU KOS or ∆vhs. (D) Brain stem titers following intracerebral infection of AG129 mice with 1 × 1⁰⁶ PFU KOS or ∆vhs. Results are derived from at least 2 independent experiments for each panel.
contrast with the almost-100,000-fold difference observed in the AG129 corneas at this time point. These data therefore show that in AG129 mice, the virulence of Δhvs is attenuated by the corneal route but largely restored by the intracerebral route.

Humans and experimental animal models show significant resistance to corneal infection by ocular pathogens, unless the cornea is physically damaged or compromised through IFN deficiency (12). This is also consistent with the observation that significant bottleneck effects for the transition of poliovirus from the periphery to the nervous system include both physical and IFN-responsive barriers (11). The attenuation of Δhvs in AG129 mice by the corneal route contrasts with significantly higher virulence by the intracerebral and intraperitoneal routes (data not shown), and these data together support the hypothesis that the cornea is a potent replication bottleneck to Δhvs replication, even in the absence of IFN responses. Although other tissues probably also limit the replication of vhs-deficient viruses (as evidenced by the lack of spread from the viscera by Δhvs), the limitation in the cornea is especially pertinent since it is both a common natural and experimental site of infection. This study also provides an in vivo parallel to previous work (5) that showed that the ability of vhs to augment HSV replication was highly cell-type dependent in vitro. Previous observations of the conservation of vhs among neurotropic herpesviruses, the attenuation of vhs-deficient viruses in the nervous system, and the role of vhs in evading the IFN response have collectively suggested that vhs must be critical for the neuro-pathogenesis of HSV (2, 10, 20, 28). This study, however, suggests that the inherent growth defect of vhs-deficient HSV-1 strains in the periphery is a critical determinant of their attenuation.

ACKNOWLEDGMENTS

This study was supported by a National Institutes of Health grant to D.A.L. (RO1 EY17007). The project was also supported by grant P20RR016437 from the National Center for Research Resources to Dartmouth.

REFERENCES

30. Taddeo Bo, Rozman B. 2006. The virion host shutoff protein (UL41) of herpes simplex virus 1 is an endoribonuclease with a substrate specificity similar to that of RNase A. J. Virol. 80:9341–9345.