2013

SCFSlimb Ubiquitin Ligase Suppresses Condensin II–Mediated Nuclear Reorganization by Degrading Cap-H2

Daniel W. Buster
Arizona Cancer Center

Scott G. Daniel
University of Arizona

Huy Q. Nguyen

Sarah L. Windler
University of California - Berkeley

Lara C. Skwarek
University of California - Berkeley

See next page for additional authors

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Medical Cell Biology Commons, and the Medical Genetics Commons

Recommended Citation
https://digitalcommons.dartmouth.edu/facoa/1578

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.
SCFSlimb ubiquitin ligase suppresses condensin II–mediated nuclear reorganization by degrading Cap-H2

Daniel W. Buster,1 Scott G. Daniel,2 Huy Q. Nguyen,1,3 Sarah L. Windler,4 Lara C. Skwarek,4 Maureen Peterson,2,3 Meredith Roberts,2 Joy H. Meserve,2 Tom Hartl,2 Joseph E. Klebba,1 David Bilder,4 Giovanni Bosco,2,3 and Gregory C. Rogers1

1Department of Cellular and Molecular Medicine, Arizona Cancer Center, and 2Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
3Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
4Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720

Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCFSlimb ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCFSlimb function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCFSlimb–mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.

Introduction

Eukaryotic genomes are spatially organized in a nonrandom manner (Kosak and Groudine, 2004; Misteli, 2007; Cremer and Cremer, 2010), and this 3D genomic structure is likely functionally important for control of gene expression (Laster and Kosak, 2010; Sanyal et al., 2011). Developments in chromosome conformation capture techniques suggest that interphase chromosomes exist as globule-like structures (chromosome territories) capable of long-range chromatin interactions (van Berkum et al., 2010; Sanyal et al., 2011). Studies probing genome-wide 3D structure and chromatin interactions revealed the organizational states of different cell types and developmental stages, making it possible to correlate gene expression patterns to 3D chromosome structures (Rajapakse et al., 2010; Rajapakse and Groudine, 2011). Although chromosomes adopt a variety of conformations that may facilitate gene expression, little is known about the mechanisms regulating chromosome conformation within interphase nuclei.

An example of chromosome organization with known biological function is homologue pairing in both somatic and meiotic cells (Wu and Morris, 1999; Duncan, 2002; Grant-Downton and Dickinson, 2004; McKee, 2004; Tsai and McKee, 2011). Pairing is critical for meiotic chromosome segregation and development of haploid gametes (Zickler, 2006), but pairing in somatic cells is less understood even though somatic pairing occurs in a variety of organisms. Homologue pairing in Drosophila melanogaster somatic cells can lead to transvection (Lewis, 1954; Henikoff and Dresen, 1989; Wu and Morris, 1999; Duncan, 2002; Kennison and Southworth, 2002), which functions in trans-activation/inactivation of gene expression (Lewis, 1954).

© 2013 Buster et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
Results

SCF_{slimb} ubiquitin ligase is required for chromatin reorganization

Previously, we observed that when Slimb was depleted in cultured Drosophila S2 cells, interphase chromatin became compacted into multiple, densely stained and approximately spherical globules (unpublished data). Therefore, we reasoned that an SCF complex acts as a negative regulator of interphase chromatin condensation. To test this, we reexamined micrographs collected for an unrelated RNAi screen of the SCF family (Rogers et al., 2009) to identify genes that alter chromatin morphology. Of 58 genes tested, only three (cul-1, skpA, and slimb) caused a clear compaction-like remodeling of interphase chromosomes (Fig. 1). Depletion of target proteins was confirmed by immunoblotting (Fig. S1 A). Surface plots of nuclear fluorescence intensity revealed that control cells typically display a single bright focus (likely the heterochromatic chromocenter) amid a relatively uniform and diffuse spherical nuclear pattern (Fig. 1 A). However, Cul-1, SkpA, or Slimb depletion caused dramatic chromatin reorganization into multiple globular structures (Fig. 1, B–D). Based on overall appearance, we refer to this as the “chromatin-gumball” phenotype, which manifests as either a weak or strong phenotype in the majority of the cul-1, skpA, or slimb RNAi-treated cells (Fig. 1, E and F). This phenotype is not unique to S2 cells, as Slimb depletion in S2R+ and Kc cells produced the same effect (Fig. S1, B and C). Thus, SCF_{slimb} regulates global chromatin remodeling.

Chromosome compaction occurs during interphase in the absence of Slimb

Chromosome condensation is a well-known behavior of mitotic chromosomes. It is less clear how extensively this occurs in interphase cells. SCF_{slimb}-depleted cells displaying chromatogumball phenotypes were negative for phospho-histone H3 staining (unpublished data), demonstrating that these cells were not mitotic. Moreover, slimb RNAi induces an accumulation of G1 cells (Rogers et al., 2009), again suggesting that chromatogumball formation occurs during interphase. However, this unique chromosome reshaping might be explained if chromosomes fail to decondense as cells exit mitosis in the absence of SCF_{slimb}. To test this, cells were arrested in different nonmitotic cell cycle phases, depleted of Slimb, and then analyzed for chromatogumball formation. First, S2 cells were arrested in S phase using the drugs hydroxyurea and aphidicolin and then depleted of Slimb while arrested (Fig. S2 A). Under these conditions, Slimb depletion again drove chromatogumball formation (Fig. 1 G). Second, cells were depleted of either String/CDC25 phosphatase (to arrest cells in G2; Chen et al., 2007) or cyclin A (to block mitotic entry and induce endoreduplication; Mihaylov et al., 2002) and then co-depleted of Slimb (Fig. S2 B). These cells also formed chromatogumballs, similar to the slimb RNAi-only phenotype.
SCFSlimb suppresses condensin II activity

SCFSlimb RNAi promotes interphase chromatin compaction. (A–D) 7-d RNAi-treated S2 cells stained with Hoechst to visualize DNA. Depletion of Cul-1 (B), SkpA (C), or Slimb (D) but not control (A) promotes interphase chromatin compaction, generating a “gumball” phenotype. Cells are shown at low and high magnifications (left and middle). Shown on the right are 3D surface plots of the fluorescence intensities of the DNA (insets). (E) Representative images of DNA-stained RNAi-treated S2 cells displaying normal (wild-type), weak gumball, and strong gumball phenotypes. (F) Frequency histogram of the nuclear phenotypes in S2 cells after a 7-d depletion of the indicated proteins (n = 1,400–1,800 cells per treatment). (G) Chromatin of S-phase arrested cells compacts after \textit{slimb} RNAi. S2 cells were treated daily with DMSO or S-phase arrested with hydroxyurea + aphidicolin for 6 d. Beginning on day 2, cells were also treated daily with control or \textit{slimb} RNAi (see Fig. S2 A). Histogram shows the frequencies of nuclear phenotypes on day 6 [n = 1,100–1,600 cells per treatment]. (H) S2 cells restricted to interphase form compact chromatin domains after \textit{slimb} RNAi. Cells were treated daily with control, String, or cyclin A (cycA) dsRNA for 8 d. Stg RNAi promotes G2 arrest whereas cycA RNAi blocks mitotic entry. Beginning on day 4, cells were also treated daily with \textit{slimb} RNAi (see Fig. S2 B). Histogram shows the frequencies of nuclear phenotypes on day 8 (n = 600–1,300 cells per treatment). Error bars indicate SEM.

SCFSlimb prevents abnormal dispersal of centromeric Cid protein and nuclear envelope defects

To characterize the chromatin domains induced by SCFSlimb depletion, we used software to identify, segment (Fig. 2, A and A’), and count the number of globular domains (“gumballs”; Fig. 2 B). Cells depleted of Cul-1, SkpA, or Slimb display a mean number of 9–13 gumballs. S2 cells possess a stable aneuploid genome with approximately two X chromosomes and two major autosomes, where each autosome is present in four copies (Zhang et al., 2010). If each discrete globular domain arose from a distinct major chromosome (not including the minute fourth chromosomes), then \(\sim 10 \) gumballs per cell would be expected, which is consistent with our measurements. These findings suggest that SCFSlimb prevents interphase chromatin from undergoing extensive condensation into distinct chromosome globules.

If each chromatin gumball is a distinct chromosome, then each globular domain should contain one centromere. To test this, cells were immunostained for the centromere identifier protein Cid/CENP-A, and the number of Cid spots per globular domain was counted in Slimb-depleted cells (Fig. 2, D–F). Slimb-depleted cells had 1.6 ± 0.8 (mean ± SD) Cid spots per gumball (\(n = 285 \) gumballs). In addition, Cid spots in \textit{slimb}
displayed severe morphological defects, such as long invaginations, a crumpled raisin-like appearance, or contained lamin-stained micronuclear spheres of variable number and size (Fig. 2, G–I). In some cases, individual cells displayed a combination of these phenotypes. Therefore, extensive interphase chromatin compaction is associated with defects in nuclear envelope morphology.

Our results show that SCFSlimb depletion promotes interphase chromosome condensation, chromosome individualization, and abnormal dispersal of pericentric heterochromatin FISH signal after slimb RNAi in Kc cells.

Because chromatin can be tethered to the inner nuclear membrane (Marshall, 2002) and SCFSlimb depletion promotes spatial reorganization of interphase chromatin, we examined if nuclear envelope morphology is affected. Treated cells were immunostained for lamin to visualize their nuclear envelopes. Strikingly, nuclei of Slimb-depleted cells frequently displayed severe morphological defects, such as long invaginations, a crumpled raisin-like appearance, or contained lamin-stained micronuclear spheres of variable number and size (Fig. 2, G–I). In some cases, individual cells displayed a combination of these phenotypes. Therefore, extensive interphase chromatin compaction is associated with defects in nuclear envelope morphology.

Slimb regulates chromosome structure through condensin II, not condensin I

Our results show that SCFSlimb depletion promotes interphase chromosome condensation, chromosome individualization, and...
formation of globular chromosome territories. Condensin complexes have been implicated in these processes (Chan et al., 2004; Hirano, 2005; Hartl et al., 2008b), which suggests that SCFSlimb and condensin are components of the same pathway regulating nuclear organization. To test if condensin activity is required to generate the slimb RNAi-induced phenotypes, we performed double RNAi against slimb and several condensin subunits and then assessed rescue of chromatin condensation. First, it was necessary to shorten the duration of condensin I RNAi treatment because significant cell death results from prolonged RNAi of condensin I subunits (Sonna et al., 2003). When limited to 4 d, slimb RNAi alone produced weak chromatin-gumball phenotypes not observed in controls (Fig. S4, A, B, and G). Notably, the frequency of chromatin gumballs was not diminished when either condensin I subunit, Cap-D2 or Cap-G, was co-depleted with Slimb (no chromatin gumballs were observed in cells depleted of only Cap-D2 or Cap-G; Fig. S4, C–G). Thus, the condensin I complex is not required for chromatin reorganization caused by Slimb depletion.

Similar experiments were performed with SMC-2 (shared by condensin I and II) and the condensin II subunits, Cap-D3 and Cap-H2. DNA morphology was assessed after 7-d double RNAi treatments to deplete Slimb and any one of the condensin subunits. As before, slimb RNAi produced cells containing both weak and strong chromatin gumballs (Fig. 3, B and I). However, smc-2/slimb, cap-H2/slimb, or cap-D3/slimb double RNAi strongly rescued this phenotype (no chromatin gumballs were observed when only condensin II subunits are depleted; Fig. 3, C–I). We conclude that condensin II is required to generate the chromatin-gumball phenotype induced by Slimb depletion.

To test whether condensin II is also responsible for the centromere abnormalities induced by Slimb depletion, RNAi-treated cells were immunostained for the centromere marker Cid. Cap-H2 and Slimb co-depletion rescued the defects in Cid morphology and the number of Cid spots per nucleus (Fig. 3, J and K; and Fig. S3 C).

Because Cap-H2 and other condensin II subunits serve as anti-pairing factors during interphase (Hartl et al., 2008a,b; Joyce et al., 2012), we tested whether Slimb modulates this interphase function of condensin II. For this analysis, Kc cells were used instead of S2 cells to avoid the possibility that the segmental aneuploid S2 genome could confound the pairing measurements (Williams et al., 2007). Two FISH probes were used to label two different loci on each of the two X chromosomes. Homologue unpairing was monitored by counting the number of fluorescent spots per nucleus (Fig. 3, A and B). As before, slimb RNAi produced cells containing both weak and strong chromatin gumballs (Fig. 3, B and I). However, smc-2/slimb, cap-H2/slimb, or cap-D3/slimb double RNAi strongly rescued this phenotype (no chromatin gumballs were observed when only condensin II subunits are depleted; Fig. 3, C–I). We conclude that condensin II is required to generate the chromatin-gumball phenotype induced by Slimb depletion.

The preceding experiments demonstrate a functional interaction between Slimb and condensin II, leading us to hypothesize that SCFSlimb depletion stabilizes condensin II activity. Because SCFSlimb catalyzes protein ubiquitination, a condensin II subunit could be a Slimb target for ubiquitin-mediated degradation. Consistent with this hypothesis, Drosophila Cap-H2 contains a potential Slimb-binding site near its carboxy terminus (Fig. 4 E); this sequence (DSGISS) fits the Slimb-binding consensus (DpSGXXp[S/T]; Rogers et al., 2009). No other Drosophila condensin subunit contains this motif.

If Cap-H2 is a Slimb target, then Slimb depletion should stabilize Cap-H2. To test this, we generated an S2 stable line expressing inducible Cap-H2-EGFP, and then measured Cap-H2 levels in the lysates of RNAi-treated cells. Cap-H2-EGFP dramatically accumulated after slimb RNAi, as did our positive control Armadillo (a known Slimb substrate; Jiang and Struhl, 1998). In contrast, slimb RNAi did not affect the level of the condensin II subunit, SMC2 (Fig. 4 A). Thus, Slimb normally down-regulates Cap-H2.

We next examined if Slimb could associate with Cap-H2 using the stable line expressing Cap-H2-EGFP. When Cap-H2-EGFP was immunoprecipitated, endogenous Slimb and its binding protein SMC2 were also coimmunoprecipitated (Fig. 4 B). In the reciprocal experiment, Cap-H2-EGFP coimmunoprecipitated with endogenous Slimb (Fig. 4 C), confirming that Cap-H2 associates with Slimb.

Our hypothesis predicts that Cap-H2 is ubiquitinated in cells. To test this, immunoprecipitations were performed on lysates from cells coexpressing Cap-H2-EGFP and 3xFLAG-tagged ubiquitin. Cap-H2-EGFP was labeled with FLAG-ubiquitin, but the negative control EGFP was not (Fig. 4 D). Thus, Cap-H2 is a substrate for an endogenous ubiquitin ligase.

To test if Slimb ubiquitinates Cap-H2, we generated a Cap-H2 Slimb-binding mutant (Cap-H2-SBM-EGFP) by mutating two key residues in the binding consensus, changing DSGISS to DAGISA (S963A/S967A; Fig. 4 E). Because phosphorylation of the mutated serine residues is a prerequisite for Slimb recognition (Smelkinson and Kalderon, 2006), then Cap-H2-SBM should be stabilized if Slimb ubiquitinates Cap-H2. Surprisingly, expressed Cap-H2-SBM-EGFP was only marginally more stable than Cap-H2-EGFP (Fig. 4 F). However, maximal Slimb recognition often requires phosphorylation of multiple Ser/Thr residues that reside within and flank the Slimb-binding site (Smelkinson and Kalderon, 2006; Holland et al., 2010). Cap-H2 encodes nine residues within its
Figure 3. Depletion of condensin II subunits rescues slimb RNAi-induced nuclear phenotypes. (A–H) 7-d RNAi-treated S2 cells stained for DNA. Whereas slimb RNAi (B) promotes chromatin compaction, double RNAi of slimb and SMC-2 (D), cap-H2 (F), or cap-D3 (H) rescues this phenotype. Control (A), SMC-2 (C), cap-H2 (E), and cap-D3 (G) single RNAi-treated cells are shown at low and high magnifications (left and middle). Right, 3D surface plots of DNA fluorescence intensities. (I) Frequency histogram of nuclear phenotypes after day 7 RNAi (n = 1,200–1,500 cells per treatment). Error bars indicate SEM. (J) Day 7 double cap-H2/slimb RNAi rescues increase in Cid numbers. S2 cells immunostained for Cid (red), DNA, green. (K) Double cap-H2/slimb RNAi prevents an increase in Cid spots. The number of Cid spots per nucleus was counted from RNAi-treated interphase cells (100 cells per histogram).
last 23 amino acids that could be phosphorylated to generate a phosphodegron (Fig. 4 E). Therefore, we deleted the final 23 residues from Cap-H2 to make a new mutant (Cap-H2-ΔC23-EGFP), which lacks the Slimb-binding consensus site and the neighboring potential phosphorylation sites. Expression of the ΔC23 mutant produced a massive increase in Cap-H2 level, indicating that the complete Slimb-binding site includes residues immediately flanking the consensus motif (Fig. 4 F). Furthermore, endogenous Slimb does not coimmunoprecipitate with Cap-H2-ΔC23-EGFP from the lysate of mutant-expressing cells (Fig. 4 G). These results suggest that Slimb binds the carboxy-terminal Slimb-binding region in Cap-H2.

Finally, our model predicts that Cap-H2 phosphorylation promotes Slimb binding. The phosphorylation state of Cap-H2 in cells was evaluated using a gel-shift assay. Cap-H2-EGFP-expressing cells were RNAi-treated to deplete Slimb, after which Cap-H2-EGFP were mock- or lambda phosphatase-treated. Compared with mock treatment (broken line), lambda phosphatase treatment alters the mobility of Cap-H2-EGFP to a faster migrating species (dotted line).
from lysates and incubated with lambda phosphatase. When analyzed by SDS-PAGE, phosphatase treatment altered the mobility of Cap-H2-EGFP to a faster migrating species, which is consistent with the hypothesis that Cap-H2 is phosphorylated in cells (Fig. 4 H). Thus, Slimb depletion stabilizes phosphorylated Cap-H2. Collectively, our results support the model that Slimb binds and ubiquitinates phosphorylated Cap-H2.

Expression of stable Cap-H2 mutants induce chromosome reorganization, centromere dispersal, and nuclear envelope defects

Our findings suggest that Cap-H2 destruction by Slimb inactivates condensin II, thereby preventing interphase chromatin reorganization. If correct, then expression of nondegradable Cap-H2 that cannot be targeted by Slimb should induce similar nuclear defects. We tested this prediction by overexpressing EGFP, Cap-H2-EGFP, or Cap-H2-ΔC23-EGFP in S2 cells and then analyzing their interphase chromatin organization (Fig. 5 A). As expected, transgenic Cap-H2 proteins were confined to nuclei (Fig. 5 C and not depicted). Although EGFP expression had no effect on interphase chromosome condensation, a high expression level of wild-type Cap-H2-EGFP induced a weak chromatin-gumball phenotype in ~40% of cells (Fig. 5 B). Expression of Cap-H2-ΔC23-EGFP resulted in even greater frequencies of weak and strong chromatin gumballs (Fig. 5 B). Thus, Cap-H2 overexpression is sufficient to cause interphase chromatin compaction, and the effect is heightened by expression of nondegradable Cap-H2.

Likewise, nondegradable Cap-H2 expression induced Cid dispersal. Cap-H2-ΔC23-EGFP-expressing cells contained short strings of multiple Cid spots on chromosome globules (Fig. 5 C) and had an increased number of Cid spots per nucleus (14.4 ± 5.1 [mean ± SD] vs. 7.2 ± 3.2 in control; Fig. 5 D), strikingly similar to that in Slimb-depleted cells (Fig. 5 C). Moreover, Cap-H2-ΔC23-EGFP-expressing cells displayed all of the nuclear envelope defects observed in Slimb-depleted cells (Fig. 5, F and G). Thus, up-regulation of condensin II activity is sufficient to induce centromere dispersal and nuclear envelope defects.

Previously, Slimb was found to localize to nuclei, but its association with chromatin was not determined (Rogers et al., 2009). To test this, nuclear fractions were isolated from S2 cells expressing EGFP and then further separated into nuclear-soluble and chromatin-bound fractions. Immunoblots confirmed that endogenous Slimb is nuclear and present in both the chromatin-bound and nuclear-soluble fractions (Fig. S4 J, left), revealing a novel association of Slimb with chromatin and suggesting that Slimb regulates Cap-H2 levels on chromatin. To test this prediction, subnuclear distributions of the Cap-H2-ΔC23-EGFP protein were determined. Cap-H2-ΔC23-EGFP levels massively accumulated in the chromatin-bound fraction, in contrast to Cap-H2-EGFP (Fig. S4 J, middle and right). Thus, eliminating the Slimb-binding site stabilizes Cap-H2 on chromatin, where its levels are normally low. These findings are consistent with the model that Slimb binds and ubiquitinates chromatin-bound Cap-H2, but do not exclude the possibility that non-chromatin-bound Cap-H2 is ubiquitinated.

Cap-H2 and Slimb genetically interact to regulate polytene chromosome pairing in vivo

We next used Drosophila larvae to test the validity of our model in vivo by examining if interphase chromatin is reorganized in larvae with Slimb mutations. The proliferating diploid cells of wing imaginal disks from homozygous null Slimb mutant clones were stained for nuclear lamin and DNA. Whereas nuclear staining was roughly uniform in wild-type cells, chromatin was reorganized into compact, spherical structures surrounded by distorted nuclear envelopes in Slimb mutant cells (Fig. 6, A and B), similar to Slimb-depleted cultured cells. Thus, Slimb regulates chromatin organization in vivo.

Previously, we've shown that the paired state of polytene chromosomes in larval salivary glands is antagonized by elevated condensin activity. Specifically, overexpressed Cap-H2 unpairs and disassembles polytene chromosomes; endogenous SMC2/4 and Cap-D3 are required for this effect (Hartl et al., 2008a). We propose that condensin II activity on chromosomes is normally suppressed by Slimb, thereby maintaining the paired status of the individual chromatids within the polytene structure. To test this, we performed a quantitative chromosome pairing assay using a fly line modified with transgenes that report the pairing state of chromosomes in vivo. A LacO array is inserted at a single site in the second chromosome, and this LacO sequence becomes labeled with LacI-GFP after heat shock. This line also contains a heat shock–inducible GAL4 transcription factor to drive expression of UAS-regulated transgenes (Hartl et al., 2008a). In this system, salivary gland polytene chromosomes are normally tightly paired and, after heat shock, contain a single fluorescent spot or stripe of LacI-GFP proteins bound to the many paired LacO array sequences. When pairing is disrupted, the aligned chromosomes bearing the LacO arrays separate, leading to multiple resolvable GFP spots; the extent of polytene unpairing is measured by counting the number of nuclear fluorescent spots.

Flies containing the pairing–reporter system were crossed with a second transgenic line that overexpresses wild-type Cap-H2 (UAS›Cap-H2{E70979}). Chromosomes of salivary glands obtained from progeny overexpressing Cap-H2 were unpaired, as indicated by the significant increase in the number of GFP spots per nucleus (18 ± 4, mean ± SEM; Fig. 6, D and G). In contrast, progeny of a different cross that overexpressed Dicer2 (a ribonuclease that generates short interfering RNA from double-stranded RNA [dsRNA]) had one GFP spot per nucleus, demonstrating that chromosomes were still paired in this control (Fig. 6, C and G).

If Slimb suppresses the Cap-H2 level in vivo, then depleting Slimb should also cause unpairing of polytene chromosomes. The pairing–reporter line was crossed to another line containing two transgenes on different chromosomes: UAS›slimb-RNAi (which encodes the slimb hairpin used for RNAi) and UAS›Dicer2. Larvae of progeny receiving both slimb-RNAi and Dicer2 transgenes had completely (100%) unpaired salivary gland chromosomes,
Cap-H2 overexpression in vivo also causes nuclear morphology defects. In 100% (n = 150) of the salivary polytene cells from control larvae, nuclei appeared round, and polytene banding patterns were not disrupted (Fig. 6 H). In contrast, all (100%) salivary cells from larvae overexpressing Cap-H2 (UAS>Cap-H2) had wrinkled nuclear envelopes (Fig. 6 I), and 32% exhibited intranuclear microspheres (Fig. S5). As in S2 cells, regulation of Cap-H2 levels in postmitotic polyploid cells maintains normal nuclear envelope morphology.
a varying number of functional alleles (Hartl et al., 2008a). For example, nurse cells from Smc4^{K0819}+/+; Cap-H2^{Z3-0019}/+ double heterozygotes (with only a single allele encoding wild-type Cap-H2) have an intermediate unpairing defect, whereas Cap-H2^{Z3-0019} homozygous cells have severe defects (Hartl et al., 2008a). If Slimb targets Cap-H2 for destruction in nurse cells, then addition of a Slimb mutation should allow Cap-H2 protein to rise and rescue the intermediate Smc4^{K0819}/+; Cap-H2^{Z3-0019}/+ phenotype by increasing the extent of unpairing.

To test this, DNA FISH probes to three different euchromatic loci (34D, 89D, and 86C) were used to measure the pairing...
status of the polytene chromosomes in mutant nurse cells; an increase in FISH spots indicates unpairing. In the Smc4^{00813}/+; Cap-H2^{25-0077}/+ double heterozygous nurse cells, FISH probes confirmed an intermediate unpairing phenotype (Fig. 7, A and D). In contrast, when Slimb function is partially diminished by crossing the Smc4^{00813}/+; Cap-H2^{25-0077}/+ line with either a null Slimb^{00111}/+ heterozygous mutant or a loss-of-function Slimb^{AI}/+ heterozygous mutant, unpairing is significantly increased in cells of the progeny (Fig. 7, B–D). Thus, partial inactivation of Slimb restores the ability of condensin II to promote polytene unpairing in nurse cells, which is consistent with Slimb acting as a negative regulator of condensin II.

Discussion

In this study, we identify a mechanism that prevents interphase chromosomes from undergoing 3D spatial reorganization due to condensin II–mediated compaction. Condensin II activity must be limited during interphase to ensure proper homologue pairing and nuclear morphology. Nuclear morphology and organization must be actively maintained, and our data demonstrate that the SCFSlimb ubiquitin ligase is a requisite component of the maintenance mechanism that down-regulates Cap-H2 levels during interphase. SCFSlimb depletion in cultured cells leads to cytological compaction of individual interphase chromosomes, reminiscent of distinct chromosome territories, and, consequently, unpairs euchromatic sequences. Cap-H2 is a Slimb ubiquitination target that contains a Slimb-binding domain, associates with Slimb, and is regulated by ubiquitin-mediated proteolysis in a Slimb-dependent manner. In vivo interactions of SMC4 and Cap-H2 with Slimb suppress condensin II activity and prevent disruption of chromosome organization in Drosophila salivary gland and ovary cells. This is the first demonstration of condensin regulation by ubiquitin-mediated proteolysis in dividing and postmitotic cells.

Both Slimb and condensin II subunits localize to the nucleus throughout the cell cycle and bind chromatin. Cap-H2 on chromatim accumulates when Slimb association is disrupted. As with other Slimb substrates, Slimb recognition of Cap-H2 is probably dependent on phosphorylation, which likely occurs on the Cap-H2 carboxyl terminus. Clearly, identification of the kinases that trigger Cap-H2 destruction is needed to fully characterize this pathway. Possibly, the activity and/or chromatin-targeting of this kinase are spatially and developmentally regulated to restrict Cap-H2 degradation to limited chromatin regions, thus locally controlling the 3D organizational state of chromosomes. Condensin II may also promote chromatin conformations that epigenetically influence gene expression patterns in a cell type–specific manner. For example, naïve T lymphocyte interphase chromatin is transcriptionally quiescent and maintained in a relatively condensed state by condensin II. After T lymphocytes are exposed to an appropriate antigen, chromatin decondenses, and, simultaneously, transcription is up-regulated (Rawlings et al., 2011).

The pathway that we describe provides a mechanistic explanation for a recent study showing that Slimb depletion prevents homologue pairing in cultured Drosophila cells but is rescued by co-depletion of Cap-H2 (Joyce et al., 2012). Our findings suggest that SCFSlimb down-regulates Cap-H2 to directly modulate homologue pairing status in both cultured cells and polyploid cells in vivo. Slimb-modulated condensin II activity also controls interphase chromosome condensation and chromosome individualization effects consistent with vertebrate condensin II’s mitotic function as an axial compactor of chromosomes (Shintomi and Hirano, 2011; Green et al., 2012). Interestingly, of the four predicted Cap-H2 splice isoforms in flies, one of these, Cap-H2-RD, lacks a large N-terminal region as well as the C-terminal 64 amino acids encoding the Slimb-binding site present in the other three isoforms. A Slimb-resistant Cap-H2 may be necessary, for example during mitosis, when rapid and large increases of condensin II activity are needed, or during differentiation, when chromatin compaction facilitates gene regulation. The Slimb-binding domain may have evolved to allow high levels of somatic homologue pairing and polytene chromosome formation. Although the Slimb-binding domain of Cap-H2 is not found outside Drosophila, it is formally possible that other organisms use other ubiquitin ligases to down-regulate condensin II.

Slimb-depleted cells exhibit additional nuclear phenotypes, including an abnormal dispersal of the centromere histone, Cid/ CENP-A. Deregulation of the Slimb-Cap-H2 mechanism is responsible for this phenotype. Consistent with these observations, condensin II has been shown to promote dispersal of pericentric heterochromatin in vivo and in cultured cells (Bauer et al., 2012; Joyce et al., 2012).

We also demonstrate new roles for both Slimb and Cap-H2 in maintaining the architecture of the nuclear envelope. Inappropriate activation of condensin II causes gross morphological changes in nuclear envelope structure. Hypercompaction of chromosomes tightly linked to the inner nuclear membrane could collapse the nuclear envelope and, in extreme cases, invaginate and internalize membrane patches forming intranuclear microspheres. Intriguingly, these deformed nuclear envelopes are similar in appearance to those in cells derived from Hutchinson-Gilford progeria syndrome patients (Scaffidi et al., 2005; Scaffidi and Misteli, 2006). Progeria and a variety of other syndromes, collectively known as laminopathies, are linked to mutations in nuclear lamins and are thought to alter gene expression, resulting in the disease state. It is tempting to speculate that the abnormal nuclear envelope shapes caused by mutations in lamin proteins are driven by condensin II. Chromatin is tethered to the nuclear periphery, through interactions with lamins or other envelope proteins, and may transduce forces to the nuclear envelope when interphase chromosomes undergo compaction. Cells with wild-type lamin function normally to withstand condensin-driven chromosome compaction. However, it is possible that in cells with compromised lamin structure, axial shortening of chromatin tethered to the envelope leads to distortions in nuclear envelope morphology. Future work is necessary to determine whether condensin II contributes to the abnormal nuclear morphology and etiology of these syndromes.

Materials and methods

Cell culture and double-stranded RNAi

Drosophila cell culture, in vitro dsRNA synthesis, and RNAi treatments were performed as described previously (Rogers et al., 2009). In brief, S2,
Studies Hybridoma Bank), and mouse and rabbit anti–phosphohistone H3 (EMD Millipore; Cell Signaling Technology). Secondary antibodies (conjugated with Cy2, Rhodamine Red-X, or Cy5; Jackson ImmunoResearch Laboratories, Inc.) were used at the manufacturer's recommended dilutions. Hoechst 33342 (Life Technologies) was used at a final dilution of 3.2 µM. Cells were mounted in a solution of 0.1 M n-propyl galate, 90% (by volume) glycerol, and 10% PBS. Specimens were imaged with a DeltaVision Core system equipped with a microscope (IX71; Olympus), a 100× objective lens (NA 1.4), and a CoolSNAP HQ2 cooled-CCD camera (Photometrics). Images were acquired with SoftWoRx v1.2 software (Applied Precision). To characterize chromatin-gumball phenotypes, images were processed using the segmentation algorithm of Cell Profiler 2.0 (Broad Institute), and surface plots were generated using ImageJ (National Institutes of Health).

Each FISH probe was made from multiple BAC clones spanning 200–350 Kb: 15 µg of BAC DNA was digested with AluI, RsaI, MseI, MspI, HaeIII, and BfuCl overnight at 37°C, ethanol precipitated, and resuspended in ddH2O. DNA was denatured at 100°C for 1 min, and then 3′-end-labeled with unmodified aminoallyl dUTP and terminal deoxynucleotidyl transferase (Roche). After incubating for 2 h at 37°C, 5 mM EDTA was added.

Kc, and S2R+ cells were cultured in SF900II media (Life Technologies). RNAi was performed in 6-well tissue culture plates. Cells (50–90% confluency) were treated with 10 µg of dsRNA in 1 ml of media and replenished with fresh media/dsRNA every other day for 4–7 d. Gene-specific primer sequences used to amplify DNA templates for RNA synthesis are shown in Table S1. Control dsRNA was synthesized from control DNA template amplified from a non-GFP sequence of the pEGFP-N1 vector (Takara Bio Inc.). Cell cycle arrest was induced by treating cells for at least 24 h with either 0.5 mM (final concentration) mimosine (for a G1-phase arrest), 1 µM hydroxyurea + 10 µM aphidicolin (S-phase arrest), 1.7 µM 20-hydroxysterol (G2-phase arrest), or 12 h of 30 µM colchicine (M-phase arrest), as described previously (Brownlee et al., 2011).

Immuno-fluorescence microscopy

For immuno-staining, cultured cells were fixed and processed exactly as described previously (Rogers et al., 2009) by first spreading cells on concanavalin A–coated, glass-bottom dishes and then fixing with 10% formaldehyde in PBS at room temperature. Primary antibodies were diluted to concentrations ranging from 1 to 20 µg/ml; they included rabbit anti-Cid (produced in-laboratory), anti-lamin ADL84.12 (Developmental Studies Hybridoma Bank), and mouse and rabbit anti–phosphohistone H3 (EMD Millipore; Cell Signaling Technology). Secondary antibodies (conjugated with Cy2, Rhodamine Red-X, or Cy5; Jackson ImmunoResearch Laboratories, Inc.) were used at the manufacturer's recommended dilutions. Hoechst 33342 (Life Technologies) was used at a final dilution of 3.2 µM. Cells were mounted in a solution of 0.1 M n-propyl galate, 90% (by volume) glycerol, and 10% PBS. Specimens were imaged with a DeltaVision Core system equipped with a microscope (IX71; Olympus), a 100× objective lens (NA 1.4), and a CoolSNAP HQ2 cooled-CCD camera (Photometrics). Images were acquired with SoftWoRx v1.2 software (Applied Precision). To characterize chromatin-gumball phenotypes, images were processed using the segmentation algorithm of Cell Profiler 2.0 (Broad Institute), and surface plots were generated using ImageJ (National Institutes of Health).

Each FISH probe was made from multiple BAC clones spanning 200–350 Kb: 15 µg of BAC DNA was digested with AluI, RsaI, MseI, MspI, HaeIII, and BfuCl overnight at 37°C, ethanol precipitated, and resuspended in ddH2O. DNA was denatured at 100°C for 1 min, and then 3′-end-labeled with unmodified aminoallyl dUTP and terminal deoxynucleotidyl transferase (Roche). After incubating for 2 h at 37°C, 5 mM EDTA was added.

Figure 7. Slimb mutations suppress condensin II loss-of-function phenotypes in polyploid nurse cells. (A) Stage 10 nurse cells from double heterozygous Smc4k08819+/+; Cap-H2z3-0019+/+ flies in the is082 genetic background were labeled with FISH probes to chromosomal positions 34D and 86C. Nurse cells maintain a pseudo-polytene structure, which is made evident by the DAPI-stained chromosomes and the clustered FISH spots indicating paired chromatids. Bars, 10 µm. (B and C) Two different Slimb alleles, UU11(B) and 3A1(C), carried on the same isogenic chromosome, were crossed with Smc4k08819+/+; Cap-H2z3-0019+/+, and triple heterozygous nurse cells were labeled with DAPI and FISH probes. (D) Stage 10 nurse cells triple labeled with FISH probes to chromosomal positions 34D, 86C, and 89D were quantified for number of spots per nucleus to determine the degree of polyteny pairing. The number of FISH spots for each chromosomal position in Smc4k08819+/+; Cap-H2z3-0019+/+ was compared with Smc4k08819+/+; Cap-H2z3-0019+/+, SlimbUU11+/+ (*, P < 10−4; n = 50 nuclei) and Smc4k08819+/+; Cap-H2z3-0019+/+, Slimb3A1+/+ (**, P < 10−9; n = 50 nuclei). Error bars indicate SEM.
added to terminate the reaction. DNA was ethanol precipitated, resuspended in ddH2O, and then conjugated to fluorophores using ARES Alexa Fluor DNA labeling kits (A-21665, A21667, and A-21676; Invitrogen) for 2 h, according to the manufacturer’s instructions (Dernburg, 2000; Hartl et al., 2008a).

Ovaries were dissected in 1x PBS and fixed in 100 mM sodium cacodylate, 100 mM sucrose, 40 mM sodium acetate, 10 mM EGF, and 3.7% (v/v) formaldehyde for 10 min at 37°C. Ovaries were washed with 0.1 M NaCl, 0.3 M sodium citrate, pH 7.0, and 0.1% Tween-20 and treated with 2 µg/ml RNase for 1 h. Germline tissue was teased apart in 2x SSC and then washed sequentially with 20% formamide, 40% formamide, and 50% formamide in 2x SSC (10 min per wash). Ovaries were then incubated at 37°C for 2 h in fresh 2x SSC/50% formamide. 2 µl of each primary antibody (Vazquez et al., 2001) labeled with a different Alexa Fluor dye were combined with 36 µl of hybridization solution (1.11% dextran sulfate and 55.5% formamide in 3.3x SSC [0.5 M NaCl and 0.05 M sodium citrate, pH 7.0]) and added to the tissue. Chromosomal DNA was then denatured for 2 min at 91°C and hybridized overnight at 37°C. Samples were washed three times with 2x SSC/50% formamide (37°C, 20 min per wash), then sequentially washed with 2x SSC/40% formamide and 2x SSC/20% formamide, and three times with 2x SSC at room temperature, 10 min per wash. Ovaries were rinsed in PBS/0.1% Tween-20 and stained with 0.1 µg/ml DAPI in PBS/0.005% Tween-20 for 10 min, followed by two 10-min washes with PBS/0.005% Tween-20. Nurse cell nuclei were stained with DAPI and then mounted in Vectashield (Vector Laboratories). Stage 10-egg chambers (and nurse cells within) were imaged using a confocal microscope (LSM 510 Meta; Carl Zeiss), a Plan-Apochromat 63×/1.4 NA objective lens, and acquisition software (LSM 510 Meta v4.0). Digitized 1 µm z-axis optical sections of samples were captured for analysis.

FISH probe preparation and hybridization on cultured cells were performed as described above for ovaries, except that cells were grown on coverslips and allowed to adhere to glass before fixation, as described previously (Williams et al., 2007; Joyce et al., 2012), and then imaged using a DeltaVision Core system identical to the system described in the first paragraph of this section. Images were acquired with SoftWoRx software (v1.2).

The number of FISH spots in each nucleus was counted manually in each z-plane for each FISH signal channel. Datasets were statistically analyzed by the two-tailed Student’s t test (unequal variance) to determine p-values.

The salivary gland polytene pairing assays were performed with transgenic lines carrying a 256-repeat array of the Lac-O sequence at chromosomal position 60F and carrying a heat shock–inducible transgene Hsp45-GFP, which encodes a fluorescent fusion protein that binds to the Lac-O array and allows for visualization of the chromosomal position of the transgene (Vazquez et al., 2001). These lines also contained transgenes Hsp70-Gal4 and UAS>Cap-H2, as described previously (Hartl et al., 2008a). Expression of GFPPLac and Cap-H2 was controlled with heat shock at 37°C for 1 h and allowed to recover for 2–4 h at 25°C, then salivary glands were dissected as follows. Third instar larvae were dissected in PBS/0.1% Triton X-100 (PB1), and glands were fixed for 10 min in PBS/4% formaldehyde. Glands were rinsed three times with PB1, stained for 10 min with 0.1 µg/ml DAPI in PBS/0.005% Triton X-100, and then washed twice with PB1 for 10 min. The Carl Zeiss confocal system described earlier in this section was used to obtain 1-µm z-axis optical sections of samples. All samples were imaged with identical settings (exposure time, illumination intensity, gain, etc.). The number of GFP spots per nucleus was counted manually from digital images displayed with LSM Image Browser software (Carl Zeiss). At least three different biological replicates were imaged for the GFP spot quantification, and a minimum of three glands per replicate were analyzed. Data were statistically analyzed with the two-tailed Student’s t test (equal variance).

The salivary glands were identified visually using salivary gland nuclei in all samples. Glands were dissected in PB1 and fixed in 10% formaldehyde in PBS for 5 min, incubated for 20 min in PBS containing 1 mg/ml wheat germ agglutinin conjugated to Alexa Fluor 488 (Vitanen and Wartiovaara, 1976), and then stained with 10 ng/ml DAPI in PBS for 10 min and washed twice with PBS (10 min per wash). Glands were mounted in Vectashield and imaged with the Carl Zeiss confocal system.

The slimbΔU11 null allele was recombined onto an FRT82 chromosome. These lines were crossed to a UbxFLP line also containing the FRT82 transposable element. The newly generated FRT82 chromosomes were outcompeted by the slimbΔU11/slimbΔU11 homozygous mutant clonal cells. Larval wing disc mutant clones were stained with lamin Dm0 mouse monoclonal antibodies (ADL84.12; Developmental Studies Hybridoma Bank). Disc nuclei images shown are single confocal sections that were collected with a confocal microscope (TCS; Leica), a Plan-Apochromat 63×/1.4 NA objective lens, and Application Suite FA software (Leica), and then assembled using Photoshop CS4 (Adobe), as described previously (Winder and Bilder, 2010). At least five samples were analyzed for each experiment.

Immunoblotting

S2 cell extracts were produced by lysing cells in PBS, 0.1% Triton X-100. The Bradford protein assay (Bio-Rad Laboratories) was used to measure lysate protein concentrations. Laemmli sample buffer was then added and samples were boiled for 5 min. The efficiency of RNAi was determined by Western blotting of treated cell lysates; equal total protein was loaded for each sample, and the integrated densities of chemiluminescent bands (measured with ImageJ) were normalized relative to the integrated densities of the loading control. Either endogenous α-tubulin or GAPDH were used as a loading control.

Antibodies

E. coli–expressed full-length GST- or MBP-Cid proteins were purified on either glutathione-Sepharose or amylose resin. Rabbit polyclonal antisera were raised against GST-tagged purified Cid protein (provided by S. Rogers, University of North Carolina, Chapel Hill), and the corresponding MBP fusion was used for antibody affinity purification by preclotting to Affigel 10/15 resin (Bio-Rad Laboratories). Antibodies were affinity purified using anti-sera using resin with coupled peptide. Additional antibodies used for Western blot analysis include polyclonal anti-Slimb (Brownlee et al., 2011), anti–α-tubulin DM1a (Sigma-Aldrich), anti–FLAG (Sigma-Aldrich), anti–GAPDH (Imgenex), monoclonal anti-Arm (provided by M. Peifer, University of North Carolina, Chapel Hill, Chapel Hill, NC), anti-Cap-D2 and SMC-C (provided by M. Heck, University of Edinburgh, Edinburgh, Scotland, UK), anti–cyclin A (provided by H. Richardson, University of Adelaide, Adelaide, Australia), anti–Cullin-1 (provided by R. Duronio, University of North Carolina, Chapel Hill), anti-SkpA (Rogers et al., 2009), and monoclonal anti-GFP JLB (Takara Bio Inc.). HRP-conjugated secondary antibodies (Sigma-Aldrich and Jackson ImmunoResearch Laboratories, Inc.) were prepared according to the manufacturer’s instructions and used at 1:1,500 dilutions.

Constrasts and transfection

cDNA encoding CapH2-EGFP was subcloned into the inducible metallothionein promoter pMT vector. Site-directed mutagenesis was performed using QuikChange II (Agilent Technologies). Expression of all constructs was induced by addition of 0.5–2 mM CuSO4 to the media. Transient transfections were performed using the Nucleofector II (Lonza) according to manufacturer’s instructions. Stable S2 cell lines were selected by cotransfection with pCDH-Hygro (Life Technologies) plasmid and treated for 3–4 wk with Hygromycin B (Life Technologies).

Immunoprecipitation

Polyclonal anti-Slimb antibody was bound to equilibrated Protein A–coupled Sepharose (Sigma-Aldrich) by gently rocking overnight at 4°C. The antibody was controlled with heat shock at 37°C for 1 h, allowed to recover for 2–4 h at 25°C, and then lysed for each experiment. The antibody–coupled Sepharose beads were washed three times with 1 ml of cell lysis buffer (CLB; 100 mM Tris, pH 7.2, 125 mM NaCl, 1 mM DTT, 0.1% Triton X-100, and 0.1 mM PMSF). Transfected S2 cells were induced to express recombinant CapH2 with 1–2 mM CuSO4. After 24 h, transfected cells were lysed in CLB, clarified by centrifugation, and then diluted to 2–5 mg/ml in CLB. Antibody-coated beads were mixed with lysate for 40 min at 4°C, washed three times with CLB, and then boiled in Laemmli sample buffer. Lambda phosphatase (New England Biolabs, Inc.) treatments were performed for 1 h at 37°C. In vivo ubiquitination assays were performed by coexpressing Plk4-GFP (Rogers et al., 2009) or CapH2-Off constructs with 3xFLAG–tagged Drosophila ubiquitin.
References

