
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Open Dartmouth: Published works by
Dartmouth faculty Faculty Work

2001

An Almost Deep Degree An Almost Deep Degree

Peter Cholak
University of Notre Dame

Marcia Groszek
Dartmouth College

Theodore Slaman
University of California - Berkeley

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

 Part of the Logic and Foundations Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Cholak, Peter; Groszek, Marcia; and Slaman, Theodore, "An Almost Deep Degree" (2001). Open Dartmouth:
Published works by Dartmouth faculty. 2344.
https://digitalcommons.dartmouth.edu/facoa/2344

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has
been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/2344?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

An Almost Deep Degree

Peter Cholak∗

University of Notre Dame
Marcia Groszek

Dartmouth College

Theodore Slaman†

University of California – Berkeley

August 17, 1999

Abstract

We show there is a non-recursive r.e. set A such that if W is any
low r.e. set, then the join W ⊕ A is also low. That is, A is “almost
deep”. This answers a question of Jockusch. The almost deep degrees
form an definable ideal in the r.e. degrees (with jump.)

1 Introduction

Bickford and Mills in [1] defined an r.e. degree a to be deep in case, for all
other r.e. degrees b,

(b⊕ a)′ = b′.

In other words, joining with a preserves the jump of every r.e. degree. They
asked whether there are non-recursive deep degrees.

Part of the motivation for asking this question is an interest in finding
definable ideals in the r.e. degrees. Such ideals can help in understanding the
global structure of the r.e. degrees; in particular they can provide ways of
understanding definability properties and automorphisms. We know of few

∗Partially supported by NSF Grant DMS-96-3465.
†Partially supported by NSF Grant DMS-97-96121.

1

non-trivial examples of such ideals. One example is the ideal of halves of
minimal pairs.

The deep degrees necessarily form an ideal in the r.e. degrees (in this case,
definable using the jump.) However, this ideal turns out to be trivial. Lempp
and Slaman in [3] showed that there are no non-recursive deep degrees: For
any non-recursive r.e. degree a, there is an r.e. degree b such that

(b⊕ a)′ >T b′.

Joining with a does not preserve the jump of b.
One can try to salvage the idea of the deep degree by requiring only that

joining with a preserves the jump on some subclass of r.e. degrees. However,
there are severe limitations on this possibility: Analysis of the construction
in [3] shows that the double jump of b can be controlled; in particular, b can
be constructed to be low2. Therefore there is no non-recursive r.e. degree a
such that joining with a preserves the jump on all low2 r.e. degrees, or on
any other collection defined using the double jump.

This leaves open the possibility that there is a non-recursive r.e. degree a
such that joining with a preserves the jump on low r.e. degrees; that is, such
that joining with a preserves lowness. We call such a degree almost deep.

The almost deep degrees form an ideal in the r.e. degrees: Suppose that
a1 and a2 are almost deep and b is low. Because a1 is almost deep, b ⊕ a1

is low; then because a2 is almost deep, (b⊕ a1)⊕ a2 = b⊕ (a1 ⊕ a2) is low;
this shows that a1 ⊕ a2 is almost deep. The ideal of almost deep degrees is
definable (using jump, or using the property of lowness.)

In this paper we show that this ideal is non-trivial: There exists a non-
recursive almost deep degree. This answers an unpublished question of
Jockusch.

Theorem 1 There is a non-recursive r.e. set A such that if W is any low
r.e. set, then the join W ⊕ A is also low.1

In section 2 we outline the main ideas in the construction of A. In section 3
we give some notation and conventions. (The details of section 3 can be
referred to in order to make the construction completely precise, but we
believe that the reader familiar with priority arguments can read the rest of

1Both Harrington and Sui have announced and later withdrawn the same theorem.

2

the paper and fill in most missing details without reference to section 3.) In
sections 4 and 5 we present the construction. In section 6 we prove that the
construction does in fact produce an r.e. set A with the desired properties.

2 The Idea of the Construction

We enumerate A using a priority argument.

2.1 Requirements and strategies

There are two types of requirements. The simplest are non-recursiveness
requirements. We guarantee that A is not recursive by making A simple: We
make A coinfinite and, for each e, satisfy the requirement

Pe: If We is infinite then We ∩ A is non-empty.

A strategy to satisfy this requirement waits for numbers greater than 2e to
be enumerated into We, and then attempts to enumerate one such number
into A. If such a strategy has infinitely many stages at which it can act, and
the restraint higher priority strategies impose on A during those stages has
finite lim inf, then the strategy will succeed in satisfying the requirement.

The remaining requirements guarantee that A is almost deep. We fix an
enumeration (We,∆e) of all pairs of r.e. sets and possible recursive approxi-
mations to ∆2 functions. For each e, we must satisfy the requirement

Re: If We is low and ∆e approximates its jump as a ∆2 function,
then We⊕A is low and its jump is approximated as a ∆2 function
by some Φe (which we will build.)

We have subrequirements of each of these requirements. We fix an enu-
meration (Γi) of all recursive functionals. For each i we must satisfy the
requirement

Se,i: Either Φe correctly predicts the convergence (or divergence)
of Γi(We⊕A) (that is, Φe predicts whether i ∈ (We⊕A)′), or ∆e

fails to correctly predict the convergence (or divergence) of some
Θi(We) (which we will build.)

3

If all of these requirements are satisfied via the first clause, Re is satisfied
because Φe approximates (We⊕A)′. If one is satisfied via the second clause,
Re is satisfied because ∆e does not approximate W ′

e.
We will include Re as well as the Se,i in our priority ordering. The reasons

for this will appear later. More or less, the priority assigned to Re will be
that of guaranteeing that Φe does approximate a ∆2 function (that is, for
each i, either Φe eventually predicts Γi(We ⊕ A) ↓ or Φe eventually predicts
Γi(We⊕A) ↑), while the priority assigned to Se,i will be that of guaranteeing
that Φe gives the correct prediction for the convergence of Γi(We ⊕A).

Ignoring for the moment this complexity, here is the basic strategy for
meeting requirement Se,i:

(0.) Set Φe to predict Γi(We ⊕ A) ↑.
(1.) Wait until a stage at which a computation Γi(We ⊕A) ↓

appears. Restrain the set A on the use of the computation
Γi(We ⊕ A) ↓.

(We are doing our part to preserve the computation. If we
could preserve the computation, we could set Φe to predict con-
vergence. However, we cannot guarantee convergence, because we
are not in control of the enumeration of We. Instead of changing
Φe we:)

Enumerate a computation Θi(We) ↓ with the same use on We

as the computation Γi(We ⊕A) ↓.
(Now we have two computations, Γi(We ⊕ A) and Θi(We),

with the same use on We. As long as we are restraining A, these
two computations will either both continue to converge or — if
We changes on their common use — both diverge.)

(2.) Wait until a stage at which either Γi(We ⊕ A) ↑ and
Θi(We) ↑ (due to a change in We), or else ∆e predicts that
Θi(We) ↓. In the first case, drop the restraint on A and return
to step (1). In the second, set Φe to predict Γi(We⊕A) ↓ and go
on.

(3.) Wait until a stage at which We changes below the com-
mon use of the computations Γi(We ⊕ A) and Θi(We) (so that
now Γi(We ⊕ A) ↑ and Θi(We) ↑.) Drop the restraint on A.

(4.) Wait until a stage at which ∆e predicts that Θi(We) ↑.
Set Φe to predict Γi(We ⊕A) ↑. Return to step (1).

4

Here is the idea behind this strategy. We are trying to satisfy the requirement
Se,i: If ∆e correctly predicts the convergence of Θi(We) then Φe correctly
predicts the convergence of Γi(We ⊕ A). We imagine an opponent enumer-
ating the computations Γi and ∆e and the set We. When a computation
Γi(We⊕A) ↓ appears, our opponent is challenging us to switch Φe to predict
convergence. We don’t respond to that challenge by immediately changing
Φe, because if we always did that our opponent could keep Φe from settling
down on a prediction just by issuing infinitely many challenges. Instead, by
making Θi(We) ↓ (with the same use as Γi(We ⊕ A)), we in turn challenge
our opponent to switch ∆e to predict convergence. (We also restrain A to
tie the convergence of Γi(We ⊕ A) to the convergence of Θi(We).)

Our opponent, who must make sure that ∆e makes correct predictions,
has two possible responses. One is to withdraw both challenges by changing
We to make both computations diverge, in which case we have gained because
Φe’s prediction of divergence is once again valid and we haven’t changed Φe.
(Changing the prediction of Φe brings Φe one step closer to never settling
down on a prediction.) Our opponent’s second option is to change ∆e to
predict convergence, in which case we then change Φe to predict convergence;
we have gained because Φe’s prediction is once again valid, and although Φe

is one step closer to never settling down, so is ∆e.
The basic idea is to force our opponent into the same situations we are in,

and then mimic our opponent’s moves. The only way our opponent can lure
us into changing Φe infinitely often is by changing ∆e infinitely often. If our
opponent succeeds in making ∆e give a correct prediction then we succeed
in making Φe give a correct prediction, and if our opponent does not succeed
then the requirement is satisfied and we don’t care about Φe’s prediction.

Assuming (for the moment) that this strategy is always allowed to act
and is never injured, there are two kinds of possible outcomes, finitary and
infinitary.

Finitary: Past some stage s, we are stuck forever waiting at some
step. In this case, either Φe correctly predicts whether Γi(We⊕A)
converges (if we wait forever at steps (1) or (3)), or ∆e fails to
correctly predict whether Θi(We) converges (if we wait forever at
steps (2) or (4).) In these outcomes, the strategy imposes a finite
permanent restraint on A.

5

Infinitary: Either past some stage s, we alternate forever be-
tween steps (1) and (2), or we infinitely often cycle through all
four steps. In the first case, Φe correctly predicts the divergence
of Γi(We ⊕ A); in the second, ∆e fails to correctly predict the
divergence of Θi(We). (∆e fails to reach a limit, since it infinitely
often changes its prediction.) In either case, the strategy infinitely
often drops its restraint on A (whenever it returns to step (1).)

In every outcome, the requirement Se,i will be satisfied. Also in every
outcome, the strategy creates an environment in which a lower priority Pc
requirement can be satisfied: in the finitary outcomes, because the Se,i strat-
egy eventually stops acting, imposing only finitely much restraint that Pc
must respect; in the infinitary outcomes, because there are infinitely many
stages at which Se,i is imposing no restraint at all.

2.2 Combining strategies

The difficulty in combining strategies for different requirements appears when
we consider the case of strategies for requirements Se,i and Sd,j, each of which
has an infinitary outcome. Infinitely often, the strategy for Se,i will drop
all its restraint on A; the stages when this happens will be determined by
changes in We. Subsequently it will impose new (perhaps higher) restraint
on A. Meanwhile, the strategy for Sd,j will act similarly, the stages at which
it drops its restraint in A determined by changes in Wd. It is possible that
the changes in We and Wd are staggered so that the two strategies never
drop their restraint on A at the same time and, in fact, combine to produce
restraint on A with infinite lim inf. This would prevent lower priority non-
recursiveness requirements from being satisfied.

This is a completely standard sort of difficulty that appears in an infinite
injury (∅′′ or Π2) construction. We can get around it in the standard way,
by having two versions of Sd,j.

One version, Sd,j, guesses that Se,i’s restraint will have lim inf equal to
zero (that is, Se,i has an infinitary outcome or a finitary outcome with zero
restraint.) This strategy Sd,j acts only when Se,i is imposing no restraint.
At other stages, Sd,j goes dormant, holding its restraint but taking no new
action. This means that if Sd,j is going to drop its restraint, it must do
so when Se,i is imposing no restraint, because those are the only stages at

6

which it can act. If Se,i’s restraint does have zero lim inf, this strategy
Sd,j gets infinitely many chances to act (and its restraint is respected in the
intervening stages); if Se,i has a finitary outcome with positive restraint, Sd,j
acts only finitely often so it has a finite effect on the construction. When
Se,i’s restraint has zero lim inf, the lim inf of Sd,j ’s restraint is also the lim
inf of the combined restraint.

The second strategy, Ŝd,j, guesses that Se,i will have a finitary outcome
with positive restraint, and acts only when Se,i is imposing restraint; at other

stages, it is injured and drops all its restraint. This strategy Ŝd,j has no effect
if Se,i’s restraint has zero lim inf (since it is injured and has no effect during
the critical stages when Se,i has dropped its restraint to zero), and if Se,i
has a finitary outcome with positive restraint, it gets to act at every stage
after Se,i has settled down. When Se,i has a finitary outcome with positive
restraint, the lim inf of the combined restraint is the maximum of the lim inf
of Ŝd,j’s restraint and the final values of Se,i’s restraint and Sd,j’s restraint.

Of course, our next strategy will have to guess at the outcomes of both
Se,i and the relevant version of Sd,j , and so on. To keep track of all this,
we build our construction on a tree; each node is a (version of a) strategy,
and its immediate successors correspond to the possible outcomes of that
strategy. During step s of the construction, we follow a path down to level
s of the tree, at each level taking action according to the strategy we find
on our path, and using its current restraint to tell us which version of the
strategy on the next level we should go to.

There is another problem, caused by the solution we have just described.
If Se,i has an infinitary outcome, the action of Sd,j is supposed to guarantee

that its requirement is satisfied. But the wrong-headed Ŝd,j gets infinitely
many chances to act, during which it might switch the prediction of Φd on
Γj(Wd ⊕ A). This will interfere with the action of Sd,j if it happens in-
finitely often, because that would make Φd fail to settle down on a prediction
regardless of what Sd,j was doing.

This is the kind of difficulty that appears in a level 3 (Π3 or ∅′′′) construc-
tion. Broadly, the difficulty is that the Π2-type requirements, the Sd,j, are
not completely independent. They come in infinite families (subrequirements
of a given Rd) whose actions must be coordinated; in our case, subrequire-
ments of Rd affect the functional Φd in ways that might interfere with each
other.

7

To address this problem, as usual, we put the requirement Rd on the
tree above all the Sd,j ’s. The role of Rd is to coordinate the action of its
subrequirements to guarantee they don’t interfere with each other. In this
proof, the way the Rd strategy does this is by taking over steps (1) and
(2) of the Sd,j strategies and executing them in a coordinated way. In this
construction only Rd can switch Φd to predict convergence. This prevents an
individual Sd,j from unilaterally switching the Φd prediction back and forth
infinitely many times.

Of course, Ŝd,j (to return to our earlier example) can still switch Φd

to predict divergence, but this is harmless to Sd,j: It won’t happen when
switching Φd conflicts with Rd, because Rd has higher priority. It won’t
happen when Sd,j needs to wait at step (3), because if Ŝd,j makes this switch
it is because Γi(We ⊕ A) actually does diverge at this stage, and Sd,j will
therefore move to step (4) at the next opportunity. And if it happens when
Sd,j is waiting at step (4) there is no problem, because if Sd,j remains waiting
at step (4) it is satisfied because ∆e makes an incorrect prediction regardless
of what Φd predicts, and if Sd,j moves past step (4) it will itself switch Φd to
predict divergence.

When Rd is carrying out steps (1) and (2) of an Sd,j strategy, we will say
that Sd,j is connected to Rd. At a later stage Sd,j may be disconnected either
through the action of Rd or because Sd,j or Rd is canceled. These connections
are not the same as the links between nodes of a tree of strategies that are
sometimes used in Π3 or ∅′′′ constructions; the “path of the construction”
(the stagewise approximation to the true path) on a tree with links travels
from the node at the top of a link directly down the link to the node at
the bottom of the link, not visiting any of the intermediate nodes. This
does not happen with the connections in our construction; the existence of
a connection affects the action of the strategy Rd but not the path of the
construction through the tree.

2.3 More requirements and strategies

We now have different versions of requirements Re and Se,i that will be ar-
ranged on a tree. The version of requirement Re placed at node α of the
tree will be called Rα

e . Below it, for each i, will be a collection of subre-
quirements Sβe,i (which will also occur in different versions placed at different
β’s.) In order to prevent interference between different versions of the same

8

requirement, insofar as possible, different versions will be building different
functions and functionals. The strategy for Rα

e will be building a possible
approximation Φα

e to a ∆2 function, and will be trying to satisfy the version
of requirement Re

Rα
e : If We is low and ∆e approximates its jump as a ∆2 function,

then We⊕A is low and its jump is approximated as a ∆2 function
by Φα

e .

Its subrequirements Sβe,i will necessarily be concerned with the same Φα
e , but

each will enumerate a different partial recursive functional Θβ
i , and will be

trying to satisfy the version of requirement Se,i

Sβe,i: Either Φα
e correctly predicts the convergence (or divergence)

of Γi(We⊕A), or ∆e fails to correctly predict the convergence (or
divergence) of Θβ

i (We).

(This is why we have not bothered to index the Θ’s as Θi,e; in the formal

construction we use Θβ
i , and β will uniquely determine e.) For the rest of

this section we will drop the superscripts α and β.
The strategy for Re has the job of executing steps (1) and (2) of the

earlier strategy for each Se,i in a coordinated way. Here is the basic strategy
Re will follow for each i. (The strategies for different i are independent of
each other.)

(0.) Wait for some requirement Se,i to ask Re to begin step
(1) of its strategy. We say Se,i connects to Re.

(1.) Wait until a stage at which a computation Γi(We ⊕A) ↓
appears. Restrain the set A on the use of the computation
Γi(We⊕A) ↓. Enumerate computations Θi(We) ↓ with the same
use on We as the computation Γi(We ⊕ A) ↓ for every version of
Se,i connected to Re. (While Re is waiting for Γi(We ⊕ A) ↓ at
this step, it can allow new versions of Se,i to connect.)

(2.) Wait until a stage at which either Γi(We ⊕ A) ↑ and
Θi(We) ↑ for all versions of Se,i connected to Re (due to a change
in We), or else ∆e predicts that Θi(We) ↓ for all versions of Se,i
connected to Re. In the first case, drop the restraint on A and
return to step (1). In the second, set Φe to predict Γi(We⊕A) ↓,

9

disconnect all the versions of Se,i and return to step (0). Drop
the restraint on A. The Se,i now begin their strategy at step (3)
with the restraint Re was holding. (While Re is waiting at this
stage, it does not allow new versions of Se,i to connect.)

Assuming (for the moment) that this strategy is always allowed to act
and is never injured, there are two kinds of possible outcomes, finitary and
infinitary.

Finitary: Past some stage s, we are stuck forever waiting at some
step. In this case, either Φe correctly predicts whether Γi(We⊕A)
converges (if we wait forever at step (1)), or ∆e fails to correctly
predict whether some version Θi(We) converges (if we wait forever
at step (2)), or some version of Se,i eventually waits forever at
step (3) or (4) of the strategy insuring Se,i is satisfied (if we wait
forever at step (0).) In the last case, our analysis of the Se,i
strategy still applies. In these outcomes, the strategy imposes a
finite permanent restraint on A.

(In the case that we wait forever at step (2), it is important
to know that no new versions of Se,i will connect to Re while
we are waiting. This means that we are waiting for ∆e to settle
down on finitely many predictions; if it does not do so, there must
be a single Θi(We) for which ∆e does not settle down to predict
convergence.)

Infinitary: Either past some stage s, we alternate forever between
steps (1) and (2), or we infinitely often cycle through all three
steps. In the first case, Φe correctly predicts the divergence of
Γi(We ⊕ A); in the second, some version of Se,i is (with the help
of Re) cycling through all four steps of the strategy insuring Se,i is
satisfied. In the second case, our analysis of the Se,i strategy still
applies. In these outcomes, the strategy infinitely often drops all
restraint on A.

There are only a couple of important ideas left for the detailed description
of the construction. The first is a (standard) organization of the tree con-
struction so that for all e and i: there is a version of Re that after some stage

10

gets to act infinitely often and is never injured, if the last clause of either of
these Re outcomes holds there is a single version of Se,i that after some stage
gets to act infinitely often and is never injured, and the strategy for Pe has
a version that gets infinitely many chances to act and has to respect only
a finite restraint. The second is coordination of the action of Re for all the
subrequirements Se,i for different i. Without such coordination, an Re that
had infinitary outcomes for two different i could conceivably impose restraint
with infinite lim inf by alternating which value of i it was imposing restraint
for. We organize the construction so that we can show this doesn’t happen
by an analysis of true stages in the enumeration of We. The rest is in the
details.

3 Notation and Conventions

3.1 Basics

We freely blur the distinction between ordered pairs, finite sets, etc. and their
numerical codes.

We use the notation [σ] to indicate approximations to r.e. sets and to
computations at the beginning of stage σ of our construction. In particular,
if W is an r.e. set, then W [σ] is the set of elements enumerated into W before
stage σ. W ∩ A = ∅[σ] indicates that W [σ] ∩A[σ] = ∅, and so on.

3.2 Partial recursive functionals and convergence

A neighborhood condition is a pair of disjoint finite sets (P,N). This neigh-
borhood condition is complete in case P ∪ N is an initial segment of ω. It
applies to a set W in case P ⊂W and N ∩W = ∅.

Because in approximating the jump our concern with partial recursive
functionals is only with whether they converge or diverge, we will view a
partial recursive functional Γ as an r.e. set of complete neighborhood con-
ditions. For a set W , Γ(W) converges (Γ(W) ↓) iff there is a neighborhood
condition in Γ that applies to W . We may refer to this neighborhood condi-
tion as a computation in Γ witnessing Γ(W) ↓. The use of this computation
is max(P ∪ N). We have required that neighborhood conditions be com-
plete because we want to know that if a computation applies to an r.e. set

11

W at some stage, any later change of W below its use will guarantee that
the computation no longer applies to W . There is no harm in this, because
any neighborhood condition is equivalent to a finite collection of complete
neighborhood conditions.

Consistent with the [σ] notation, we say that Γ(W) ↓ [σ] just in case
there is a neighborhood condition in Γ[σ] that applies to W [σ].

When considering whether a neighborhood condition applies to a recur-
sive join W ⊕A, we may view (P,N) as (coding) ((P0, P1), (N0, N1)), and say
that (P,N) applies to W ⊕A just in case (P0, N0) applies to W and (P1, N1)
applies to A. If this is a computation witnessing that Γ(W ⊕ A) ↓, its use
on W (W -use) is max(P0 ∪N0), and its use on A (A-use) is max(P1 ∪N1).

We will be enumerating various partial recursive functionals Θ during
the course of the construction. To “enumerate a computation Θ(W) ↓” (at
stage σ) is to enumerate into Θ a neighborhood condition that applies to
W [σ]. In the context of the construction, we will have some computation
(P,N) = ((P0, P1), (N0, N1)) witnessing Γ(W ⊕A) ↓ [σ]. We will “enumerate
a computation Θ(W) ↓ with the same use on W as Γ”, by which we will
mean that we enumerate the neighborhood condition (P0, N0) into Θ.

3.3 Approximations to ∆2 functions

The ∆2 functions we are interested in are the (characteristic functions of)
jumps of low r.e. sets W , that is, functions that identify the convergence
or divergence of every partial recursive functional Γi(W). For this reason,
we define a possible recursive approximation to a ∆2 function to be a total
recursive function of two variables, ∆, that takes values from the set {↑, ↓}.
If we are considering ∆ as a possible approximation to the jump of W , we
say that ∆ predicts Γi(W) converges at stage σ just in case ∆(i, σ) =↓, and
similarly for divergence. ∆ approximates the jump of W just in case, for all
i, ∆ correctly predicts the convergence (or divergence) of Γi(W):

lim
σ→∞

∆(i, σ) =


↓ if Γi(W) ↓,

↑ if Γi(W) ↑.

There is a uniform enumeration of possible recursive approximations to
∆2 functions (all of which are total) that includes correct approximations to
the jump of every low r.e. set. (Begin with a uniform enumeration of partial

12

recursive functions (fe). To compute ∆e(i, σ), compute in order the sequence
fe(i, 0), fe(i, 1), . . . , fe(i, σ), for σ many steps. If the computation of fe(i, 0)
has not yet converged after σ many steps, set ∆e(i, σ) =↑; otherwise, set
∆e(i, σ) = fe(i, τ) for the largest τ for which fe(i, τ) did converge. It is not
hard to see that if fe approximates the jump of W , so does ∆e; so if W is
low, its jump is approximated by some ∆e.)

During our construction we will be building potential approximations Φ
to ∆2 functions (specifically, the jumps of r.e. sets W ⊕ A.) We do not
explicitly state the value of every Φ(i, σ), instead, we say at each stage σ for
which i this value changes: We start by setting Φ(i, 0) =↑ for every i. At step
σ of the construction we may switch Φ to predict Γi(W ⊕ A) converges (set
Φ(i, σ+1) =↓) or switch Φ to predict Γi(W⊕A) diverges (set Φ(i, σ+1) =↑.)
If we do not switch Φ then Φ(i, σ + 1) = Φ(i, σ). Instead of Φ(i, σ), we may
write Φ(i)[σ], the prediction Φ makes at stage σ about the convergence of
Γi(W ⊕A).

3.4 The recursion theorem

The construction we are about to give in sections 4 and 5 involves a standard
use of the recursion theorem.

During the construction, we enumerate various r.e. sets (partial recursive
functionals) Θβ

i . In fact, since when the requirement Qβ enumerating Θβ
i is

deactivated Θβ
i is redefined to equal ∅, we are actually enumerating r.e. sets

Θβ,s
i = {(P,N) | (P,N) is enumerated into Θβ

i at or after stage s}.
If Qβ is activated at stage s and never again deactivated, then at the end of
the construction we have Θβ

i = Θβ,s
i .

At stage t we take action depending on what ∆e predicts about the con-
vergence of Θβ

i (We). More correctly, if s was the last stage before t at which
Qβ was activated, we take action depending on what ∆e predicts about the
convergence of Θβ,s

i (We).
Since we are enumerating all these sets as part of a single recursive con-

struction, given an index c for the construction we can recursively compute
indices f(c, i, β, s) for the sets Θβ,s

i enumerated by the construction. The pre-
dictions of ∆e about the convergence of Θβ,s

i (We) on which the construction
depends are given by the values

∆e(f(c, i, β, s), t).

13

It seems as though we need to know the index c in order to determine the
construction, but of course the recursion theorem solves the problem:

Given an index c for a construction, we can perform this construction
using the values ∆e(f(c, i, β, s), t) as the predictions of ∆e at stage t about

the convergence of Θ
β(We),s
i . (I.e., we are pretending that c is the index of the

construction we are performing.) This gives us a new construction, and its
index can be recursively computed from c as g(c). By the recursion theorem
there is an index c such that c and g(c) are indices for the same construction.
This is the construction we want.

4 The Tree Construction

What follows in this section is a standard construction using a tree of strate-
gies. Almost the only feature specific to this construction is the choice of
outcomes for individual strategies, and even this is fairly standard given the
nature of the strategies.

The tree of our construction will be the tree of finite sequences of natural
numbers. The tree is ordered by end extension, as usual. To each node α of
the tree we assign a strategy Qα of the construction as follows:

|α| = 2n ⇒ Qα = P α
n ,

|α| = 2n+ 1 and n codes (e, 0) ⇒ Qα = Rα
e ,

|α| = 2n+ 1 and n codes (e, i+ 1) ⇒ Qα = Sαe,i.

The intention is that the strategy Qα is working on the requirement Q.
Strategies assigned to nodes on the same level of the tree are working on
the same requirement. The immediate successors of α correspond to the
different possible outcomes of the strategy Qα.

If Qα = Rα
e , Q

β = Sβe,i, α
_n ⊂ β and n 6= 0, then Sβe,i is inert and does

nothing. This reflects the fact (which we will see) that if Rα
e has a non-zero

outcome, corresponding to a non-zero permanent restraint, the requirement
Re is guaranteed to be satisfied by the action of the strategy Rα

e , and so there
is no need for Sβe,i to take any action. (Recall that Rα

e is carrying out steps (1)
and (2) of the Se,j strategies outlined above. Holding a permanent restraint
corresponds to waiting forever at step (2). When this happens, the strategy
is waiting forever for ∆e to produce a correct prediction that some Θj(We) ↓;

14

therefore, this means that ∆e does not correctly predict the convergence of
Θj(We), and requirement Re is satisfied because ∆e does not approximate
the jump of We.)

If we let B be an infinite branch through the tree, we get a sequence
of strategies

〈
QB(i) | i < ω

〉
with the property that every requirement Pe,

Re and Se,i has an associated strategy in the sequence, and the strategy
associated with a requirement Re comes before the strategies associated with
the subrequirements Se,i.

We also have other orderings on our tree:

α <left β ⇔ ∃i [(∀j < i) α(j) = β(j) and α(i) < β(i)];

α <lex β ⇔ α ⊂ β or α <left β.

The strategy Qα has higher priority than the strategy Qβ just in case α <lex

β.
For convenience, we will index the stages of the construction by ordered

pairs (s, t) with t ≤ s. At stage (s, t) we will take action according to some
strategy at level t of the tree; the choice of strategy will be determined by
the actions taken at earlier stages. The successor of the stage σ = (s, t) is
defined by

σ+ =
{

(s, t+ 1) if t < s,
(s+ 1, 0) if t = s.

In this section we will describe how we move through the tree. In section 5
we will detail the action to be taken for a given strategy at a given stage.
This detail will define the restraint being held at the beginning of stage σ by
strategy Qα, which appears in the following definition as restraint(Qα)[σ].

The stage σ outcome (the outcome at the beginning of stage σ) of strategy
Qα is defined to be

outcome(P α
e)[σ] = 1 ⇔ We ∩ A = ∅[σ],

outcome(P α
e)[σ] = 0 ⇔ We ∩ A 6= ∅[σ],

outcome(Rα
e)[σ] = r ⇔ restraint(Rα

e)[σ] = r,

outcome(Sαe,i)[σ] = r ⇔ restraint(Sαe,i)[σ] = r.

At stage σ = (s, t) we visit the node of the tree node(σ), which is defined
as follows,

σ = (s, 0) ⇒ node(σ) = 〈〉 ,

15

σ = (s, t+ 1) = ρ+ ⇒ node(σ) = node(ρ)_outcome(Qnode(ρ))[σ],

we cancel, or deactivate, strategies Qβ for node(σ) <left β, and we take
action for the strategy Qnode(σ). At stage σ the current or stage σ path of the
construction is the finite branch of the tree terminating with node(σ).

A note here: We take [σ] to refer to the situation at the beginning of
stage σ. In order to conform to this standard, the “stage σ outcome” of
strategy Qα, outcome(Qα)[σ], is actually the outcome of Qα at the beginning
of stage σ. The outcome of action taken during stage σ is outcome(Qα)[σ+].
Therefore at stage σ we visit the node α = node(σ), we take action for
the strategy Qα, and either we return to the root of the tree, 〈〉 (in case
σ = (s, s)), or we go on to node α_outcome(Qα)[σ+].

We define the “true path of the construction” to be the leftmost path
visited infinitely often. I.e., α is on the true path of the construction iff
there are infinitely many stages σ for which node(σ) = α, but only finitely
many stages for which node(σ) <left α. Once the construction is defined,
we will prove inductively that the true path of the construction is an infinite
branch through the tree and the actions of the strategies along the true path
guarantee the satisfaction of all the requirements.

In order to accomplish this last, we arrange the construction so that a
strategy at any node respects the restraint imposed by strategies of higher
priority, including those to its left in the tree. A strategy is injured and
drops all its restraint (it is canceled or deactivated) every time the current
path of the construction goes to its left. Therefore, a strategy along the true
path will only have to respect finitely many higher priority strategies (those
above it, and those to the left that are actually visited at some stage of the
construction) and its restraint will not be injured by lower priority strategies
(including those to the right.)

As a simple example, section 2.2 discussed two versions of one of the S
requirements, Sd,j and Ŝd,j ; Sd,j acts when Rd is imposing no restraint and

holds its restraint when Rd is imposing restraint, and Ŝd,j acts when Rd is
imposing restraint and is canceled when Rd is not imposing restraint. We can
think of Ŝd,j as being to the right of Sd,j on the tree. When Rd is imposing
no restraint, the path of the construction goes through Sd,j (which gets to

act) and Ŝd,j (to the right) is canceled. When Rd is imposing restraint, the

path of the construction goes through Ŝd,j (which gets to act) and Sd,j (to
the left) is respected.

16

5 Action of Individual Strategies

Now we complete the construction by defining the action taken at each stage.
Claims 1 through 8 at the end of this section isolate some easily checked prop-
erties of the construction. Section 6 will give the proof that the construction
does produce a set having almost deep degree.

5.1 Formalities and conventions:

Suppose we are at stage σ. All sets and computations mentioned in the
description of stage σ of the construction are taken to be as approximated
at stage σ; for ease of reading, we eliminate the notation [σ]. For example,
we will say (P,N) applies to We to mean (P,N) applies to We[σ].

Various parameters are determined during each stage of the construction.
At stage σ the construction determines which parameters will change their
values; all others have the same value at the end of stage σ as at the begin-
ning. We use the notation [σ] to indicate the value of a parameter at the be-
ginning of stage σ, but in the description of stage σ we drop the notation [σ].
For example, we will say Rα

e is in state (1) for i to mean i-state(Rα
e)[σ] = 1.

Initial values of the parameters (at the beginning of stage 0) are:
For requirements Rα

e and indices i:
i-state(Rα

e) = inactive,
i-restraint(Rα

e) = 0,
Rα
e is not preserving any computation for i,

Φα
e (i) =↑ (Φα

e predicts every computation diverges.)
We define restraint(Rα

e) to be the maximum of i-restraint(Rα
e).

For requirements Sβe,i, α ⊂ β:

state(Sβe,i) = inactive,

restraint(Sβe,i) = 0,

Sβe,i is not preserving any computation,

Sβe,i is not connected to Rα
e ,

Θβ
i = ∅ (there are no computations in Θβ

i .)
We use some less formal but intuitive terminology. For example, for a

requirement Qα to “impose restraint r” means to set restraint(Qα) = r, to
“drop restraint” means to set restraint(Qα) = 0, to “be holding restraint r”

17

means that the value of restraint(Qα) is r, and to “transfer restraint r to
Qβ” means to set restraint(Qβ) = r.

The stage σ outcome of Qα was defined in section 4. Except for the P α
e ,

which have only two possible outcomes (determined by whether We∩A = ∅),
the outcome of a requirement is the restraint it is holding.

5.2 Action, activation and deactivation

At stage σ we deactivate Qα for all α such that node(σ) <left α, and we take
action for Qnode(σ).

5.2.1 Deactivation and activation for Qα = P α
e :

Nothing needs to be done to activate or deactivate P α
e .

5.2.2 Action for Qα = P α
e :

The restraint Qα must respect during stage σ is the maximum R of the
restraints

restraint(Qβ)[σ] for β <lex α.

If We ∩ A = ∅[σ] and there is some x ∈ We[σ] such that x > 2e and x > R,
then enumerate one such x into A at stage σ. Otherwise, we take no action
at stage σ.

5.2.3 Deactivation and activation for Qα = Rα
e :

To deactivate Rα
e , set Φα

e to predict Γi(We ⊕ A) ↑ for every i. Put Rα
e into

state inactive for every i. Disconnect every Sβe,i from Rα
e . Set every i-restraint

of Rα
e equal to 0.

To activate Rα
e , put Rα

e into state (0) for every i.

5.2.4 Action for Qα = Rα
e :

Because Rα
e acts to preserve computations, and there may be several compu-

tations in Γi applying to We⊕A at a given stage, we order the computations
so we can be sure none are overlooked. This ordering is defined in the context
of given enumerations of Γi and We ⊕ A and its domain is all computations
in Γi that apply to We ⊕ A[σ] at any stage σ:

18

Suppose (P,N) ∈ Γi[σ] applies to We⊕A[σ], and σ is the least such stage.
Suppose (P ′, N ′) ∈ Γi[σ

′] applies to We⊕A[σ′], and σ′ is the least such stage.
Then (P,N) is less than (P ′, N ′) in case:

(i.) σ < σ′,
(ii.) σ = σ′ and use(P,N) < use(P ′, N ′),
(iii.) σ = σ′, use(P,N) = use(P ′, N ′) and code(P,N) < code(P ′, N ′).

(Clause (i.) is the key clause.)
Now we describe the action for Rα

e :
If Rα

e is inactive, activate it.
For all i ≤ s (where our current stage is σ = (s, t)):
If Rα

e is in state (0) for i:

If no Sβe,i is connected to Rα
e , stay in state (0) for i, and end

action for i. (The role of Rα
e is to carry out steps (1) and (2) of

the strategies for subrequirements Sβe,i. If no subrequirement is
connected to Rα

e , that means no subrequirement needs to have
one of these steps carried out at this stage.)

If some Sβe,i is connected to Rα
e , then go to state (1) for i. (We

will see from the rest of the construction that in this case Φα
e

currently predicts that Γi(We ⊕A) ↑. See Claim 2.)

If Rα
e is in state (1) for i (Rα

e is carrying out step (1) of the strategies for
connected subrequirements):

If Γi(We ⊕A) ↑, end action for i.
If Γi(We ⊕ A) ↓, choose the least computation (P,N) ∈ Γi

that applies to (We ⊕ A). Let τ be the last stage before σ at
which the construction visited α. (There must be such a stage,
since Rα

e must have been activated at an earlier stage in order to
be in state (1) at this stage.) If (P,N) did not apply to We ⊕ A
at stage τ , do nothing. (For technical reasons we want to act
only on computations that have persisted for at least two visits
to Rα

e ; it will allow us to insure that computations acted on at
“true stages” are permanent computations.) Otherwise, for all
Sβe,i connected to Rα

e , enumerate a computation Θβ
i (We) ↓ with

the same use on We as Γi(We ⊕ A). Preserve the computation
(P,N) by imposing i-restraint equal to A-use(Γi(We ⊕ A)) + 1.
Go to state (2) for i.

19

If Rα
e is in state (2) for i: Rα

e is preserving some computation (P,N)
witnessing Γi(We ⊕A) ↓ by holding i-restraint equal to r.

If that computation no longer applies to We ⊕A (this will be
due to a We change, so also all Θβ

i (We) ↑ for Sβe,i connected to
Rα
e ; see Claim 6), drop the i-restraint on A and go to state (1)

for i.
If (P,N) still applies to We ⊕ A, and for some Sβe,i connected

to Rα
e , ∆e does not predict Θβ

i (We) ↓, stay in state (2) for i and
end action for i. (We will see from the rest of the construction,
no new Sβe,i can connect to Re while Re remains in state (2) and
holding restraint on A, so we are waiting for finitely many ∆e

predictions; see Claim 2.)
If (P,N) still applies to We ⊕A, and for all Sβe,i connected to

Rα
e , ∆e predicts Θβ

i (We) ↓, then: For all such Sβe,i, disconnect Sβe,i
from Re, put Sβe,i into state (3) and transfer to Sβe,i the restraint
r preserving the computation (P,N). Drop the i-restraint at Rα

e .
Switch Φα

e to predict Γi(We ⊕ A) ↓. Go to state (0) for i.

(This means strategies to the left of the path of the construction can
increase their restraint even though they are not visited, as Re on the path
of the construction transfers A restraint downwards. However, for a given α
on the true path, nodes to the left of α increase their A restraint in this way
only finitely often; see Claim 1.)

The restraint held by Rα
e at the end of stage σ, restraint(Rα

e)[σ
+], is the

maximum of the i-restraints it is holding for all i ≤ s.

5.2.5 Deactivation and activation for Qα = Sαe,i:

By construction of the tree, there is a unique γ ⊂ α for which Qγ = Rγ
e .

To deactivate Sαe,i, disconnect Sαe,i from Rγ
e , set its restraint equal to 0,

put Sαe,i into state inactive, and set Θα
i = ∅ (in other words, remove any

computations previously enumerated into Θα
i .)

To activate Sαe,i:
If γ_n ⊂ α for n 6= 0, then Sαe,i is inert; take no action. Otherwise:

If some other Sβe,i is in state (3) and is holding restraint equal to r to
preserve a computation (P,N) witnessing Γi(We ⊕ A) ↓ that still applies to

20

(We ⊕ A), then go into state (3), preserve the same computation (P,N) by
imposing the same restraint r, and enumerate a computation Θα

i (We) ↓ with
the same use on We. (Necessarily, in this case, β <left α. We will see that
there is only one possible choice for the computation (P,N); see Claim 3.)

Otherwise, set Φα
e to predict Γi(We ⊕ A) ↑, connect to Rγ

e , go into state
connected and set the restraint of Sαe,i equal to 0.

5.2.6 Action for Qα = Sαe,i:

There is a unique γ ⊂ α for which Qγ = Rγ
e .

If γ_n ⊂ α for n 6= 0, then Sαe,i is inert; take no action. If γ_0 ⊂ α, then:

If Sαe,i is inactive, activate it.
If the strategy is connected to Rγ

e , do nothing.
If the strategy is in state (3), then it is holding some restraint

on A to preserve a computation (P,N) witnessing Γi(We ⊕A) ↓.
Also, there is a computation in Θα

i with the same use on We.
If (P,N) no longer applies to We ⊕ A (this will be due to a We

change, so Θβ
i (We) ↑; see Claim 6), drop the restraint on A and

go to state (4).
If the strategy is in state (4), and ∆e does not predict that

Θα
i (We) ↑, do nothing. If ∆e does predict that Θα

i (We) ↑, then
change Φγ

e to predict that Γi(We ⊕ A) ↑, go into state connected
and connect to Rγ

e .

5.3 Properties of the construction

This completes the construction. Before going on, we state a few easily
checked properties.

Claim 1 If the path of the construction never goes to the left of α past stage
σ, there is a stage τ > σ past which no requirement to the left of α ever
changes its restraint.

Once the path of the construction never goes to the left of α, no re-
quirement to the left of α will ever act again. The only way in which a
requirement can increase its restraint without acting is when an Sβe,i gets
restraint transferred from an Rγ

e to which it was connected. But this can

21

happen only finitely often, because only finitely many requirements to the
left of α have been activated, and once one of them gains transferred restraint
it is disconnected and will never be connected again (since it will never act
again.)

Claim 2 (i.) Whenever Rα
e is in state (2) for i, it is holding positive re-

straint.
(ii.) Whenever Rα

e is in state (2) for i, no Sβe,j connects to Rα
e .

(iii.) Whenever Rα
e is in states (1) or (2) for i, Φα

e predicts Γi(We ⊕ A)
diverges.

(i.) holds by the action of Rα
e .

(ii.) holds by (i) and the fact that all Sβe,j below non-zero outcomes for

Rα
e are inert, so while Rα

e is holding non-zero restraint no Sβe,j can connect.
(iii.) holds because Φα

e is only set to predict Γi(We ⊕ A) converges when
Rα
e leaves state (2) for state (0) and disconnects all Sβe,j, and before Rα

e enters

state (1) again some Sβe,i must connect to Rα
e and set Φα

e to predict Γi(We⊕A)
diverges (which Φα

e will continue to predict until Rα
e leaves state (2) for state

(0) again.)

Claim 3 (i.) If (P,N) is the least computation in Γi that applies to We⊕A
at stage σ, and (P,N) still applies to We ⊕A at stage τ > σ, then (P,N) is
the least computation in Γi that applies to We ⊕A at stage τ .

(ii.) If any requirement is holding restraint to preserve a computation
(P,N) witnessing Γi(We⊕A) ↓ at stage σ, and (P,N) still applies to We⊕A
at stage τ > σ, then (P,N) is the least computation in Γi that applies to
We ⊕ A at stage τ . (In particular, at any stage, no two requirements can be
preserving different computations witnessing Γi(We⊕A) ↓, both of which still
apply to We ⊕A.)

(iii.) If Sβe,i is holding restraint at stage τ to preserve a computation
(P,N) witnessing Γi(We ⊕ A) ↓, and (P,N) still applies to We ⊕ A at stage
τ , then no requirement switches Φe to predict Γi(We ⊕ A) ↑ at stage τ .

(i.) holds by definition of the ordering on computations in Γi.
(ii.) holds by construction (when any computation is first preserved it is

the least one that applies) and (i).
(iii.) holds because only some other Sγe,i on the same level could switch

Φe to predict Γi(We ⊕ A) ↑ at stage τ . This γ couldn’t be to the left of β,

22

otherwise Sβe,i would have been canceled. If γ is to the right of β, Sγe,i was
activated after the construction last visited β, and by the rules for activating
Sγe,i, S

γ
e,i went into state (3) preserving the same computation (P,N). (Note

that by (ii) the computation (P,N) was the only possible choice.) But then,
since (P,N) still applies at stage τ , Sγe,i remains in state (3) and does not
switch the prediction of Φα

e .

Claim 4 If a requirement Qα is holding restraint r during stage σ, and a
number less than r is enumerated into A during stage σ, then that requirement
is canceled at stage σ+.

The requirement P β
e enumerating this number into A cannot be to the

left of Qα, because in that case Qα would already have been deactivated. It
cannot be below or to the right of Qα, because then it would respect the
restraint of Qα. Therefore it must be above Qα; β ⊂ α. The fact that it acts
at stage σ means that We ∩ A = ∅[σ], and We ∩ A 6= ∅[σ+]. But this means
that Qα must be below β_1 (because it was activated before stage σ), and
the outcome of P β

e changes at stage σ, so node(σ+) = β_0 <left α and Qα

is deactivated at stage σ+.

Claim 5 Suppose Qα is preserving (P,N) at the end of stage σ and (P,N)
applies to We⊕A[σ] but not to We⊕A[σ+]. Then either We[σ

+] differs from
We[σ] on the We-use of (P,N), or Qα is deactivated at stage σ+.

This follows from Claim 4, since if Qα is preserving (P,N) it is holding
restraint greater than the A-use of (P,N), so if Qα is not deactivated at stage
σ+ it must have been a change in We that caused (P,N) to apply no longer.

Claim 6 Suppose that at stage σ either Sβe,i is in state (4) or Sβe,i is connected

to Rα
e and Rα

e is in state (1) for i. Then at stage σ, Θβ
i (We) ↑.

Whenever a computation Θβ
i (We) ↓ is enumerated, we have Γi(We⊕A) ↓

with the same We-use, and A is restrained by Rα
e in state (2) or Sβe.i in state

(3). If Rα
e enters state (1) or Sβe.i enters state (4), we must have Γi(We⊕A) ↑.

By Claim 5, (since Rα
e or Sβe,i was not immediately canceled) the restraint

on A was respected, so Γi(We ⊕ A) diverges because We changed below its
We-use. This is also the use of Θβ

i (We), so Θβ
i (We) ↑.

23

Claim 7 If Sβe,i is never deactivated after some stage, then the final Θβ
i is

an r.e. set.

If Sβe,i is last deactivated at stage σ, the final Θβ
i is just all computations

enumerated into Θβ
i after stage σ.

Claim 8 The set A enumerated by this construction is co-infinite.

For each e, at most one number is enumerated into A by any version of Pe
(since this will happen only at a stage when We ∩ A = ∅), and that number
is bigger than 2e. No other numbers are enumerated into A.

6 The Rest of the Proof

Lemma 1 If α is on the true path of the construction and Qα = P α
e , then α

has an immediate successor on the true path of the construction, and Pe is
satisfied.

Pe: If We is infinite then We ∩ A is non-empty.

If We ∩ A 6= ∅, then for all stages σ large enough so that We ∩ A 6= ∅[σ],
outcome(Qα)[σ] = 0; α_0 is on the true path of the construction. In this
case Pe is satisfied because We ∩A 6= ∅.

If We ∩ A = ∅, then for all stages σ, outcome(Qα)[σ] = 1; α_1 is on the
true path of the construction. In this case, Pe is satisfied because We is finite:

Let σ be a stage past which the path of the construction is never to the
left of α, and no Qβ for β <left α ever changes its restraint. (There is such a
stage by Claim 1.) Let R be the maximum of restraint(Qβ)[σ] for β <left α
and α(i) for i < length(α). (Recall that α(i) is the outcome of the strategy
on level i when the path of the construction visits α, and in the relevant
cases the outcome is the restraint that strategy is holding.) At every stage
τ > σ for which node(τ) = α, the restraint P α

e must respect at stage τ is R.
If there were an x > max(R, 2e) in We, then there would be one at a stage
τ > σ for which node(τ) = α, and at that stage P α

e would enumerate such an
x into A. By assumption, We ∩ A = ∅, so this does not happen. Therefore,
We has no elements greater than max(R, 2e).

24

Lemma 2 If α is on the true path of the construction and Qα = Rα
e , then:

If α_0 is on the true path of the construction, for each i one of:
(i.) From some stage on, Rα

e remains in state (0) for i. In this case, past
this stage no Sβe,i is ever connected to Rα

e .
(ii.) From some stage on, Rα

e remains in states (1) and/or (2) for i. In
this case, Φα

e correctly predicts the divergence of Γi(We⊕A). Therefore every
Sβe,i for α ⊂ β is satisfied.

(iii.) There are infinitely many stages for which Rα
e is in state (0) for i,

infinitely many for which it is in state (1), and infinitely many for which it is
in state (2). In this case, every Sβe,i is disconnected from Rα

e during infinitely
many stages.

If α_0 is not on the true path of the construction, then α_n is on the
true path of the construction for some n > 0. In this case Rα

e is satisfied
because ∆e fails to correctly predict the convergence of some Θβ

i (We).
In particular, α has an immediate successor on the true path of the con-

struction.

Rα
e : If We is low and ∆e approximates its jump as a ∆2 function,

then We⊕A is low and its jump is approximated as a ∆2 function
by Φα

e .

Because α is on the true path of the construction, there is some stage
ρ past which Rα

e remains active. First we suppose that for infinitely many
stages τ > ρ, restraint(Rα

e) = 0[τ]. Then α_0 is on the true path of the
construction. In this case, for a given i, there are several possible behaviors
for Rα

e :
(i.) From some stage σ on, Rα

e remains in state (0) for i. By construction,
whenever an Sβe,i connects to Rα

e (past stage ρ), Rα
e moves into state (1) the

next time the construction visits Rα
e . Since Rα

e remains in state (0) from
some stage on, this means that past stage σ no Sβe,i is ever connected to Rα

e .
(ii.) From some stage σ on, Rα

e remains in states (1) and/or (2). Infinitely
often it is in state (1). (That last follows from the assumption that for
infinitely many stages τ ⊃ σ, restraint(Rα

e) = 0[τ], because when Rα
e is in

state (2) its restraint is positive.) In this case, from this stage on, Φα
e predicts

that Γi(We ⊕ A) ↑. (This is because whenever Rα
e is in states (1) or (2), Φα

e

predicts Γi(We ⊕ A) ↑, by Claim 2.) Furthermore, this prediction is correct:
Suppose not. Let (P,N) be the least computation in Γi that applies to

We ⊕ A. Choose a stage τ > σ such that (P,N) is the least computation in

25

Γi[τ] that applies to We ⊕ A[τ], Rα
e is in state (1) at the beginning of stage

τ , and node(τ) = α. When we take action for Rα
e at stage τ , Rα

e will go
into state (2) and preserve the computation (P,N) by imposing restraint.
Since we assume (P,N) actually applies to We⊕A, We⊕A will never change
on its use, and Rα

e will never move back into state (1), contradicting our
assumptions about this case.

(iii.) The states ofRα
e cycle: There are infinitely many stages for which Rα

e

is in state (0) for i, infinitely many for which it is in state (1), and infinitely
many for which it is in state (2). In this case, every Sβe,i is disconnected from
Rα
e during infinitely many stages, because every time Rα

e goes from state (2)
to state (0), every Sβe,i is disconnected from Rα

e .
This proves the first part of the lemma.
It remains to analyze the case in which, past some stage, restraint(Rα

e) >
0. Let σ be a stage past which Rα

e remains active and its restraint remains
non-zero. At every stage past σ, then, Rα

e is in state (2) for at least one i.
At stage σ, only finitely many Sβe,i are connected to Rα

e . Past stage σ,

no Sβe,i is ever connected to Rα
e (by Claim 2), but some may be disconnected

as Rα
e moves into state (0) for that particular i. Choose σ large enough

so that any Sβe,i that is going to be disconnected from Rα
e has already been

disconnected by stage σ.
There are finitely many i for which some Sβe,i is connected to Rα

e at (and
past) stage σ; for these i, Rα

e remains in states (1) and/or (2) from stage
σ on. It may be that for some i there is a stage past which Rα

e remains in
state (2); let I be the set of all such i, and choose σ large enough so that
past stage σ, Rα

e remains in state (2) for all i ∈ I. (We will see shortly that
I 6= ∅.)

Past stage σ, for each i ∈ I, Rα
e remains in state (2) for i, holding restraint

ri. Let R be the maximum of the ri for i ∈ I. At every stage past σ, the
restraint of Rα

e is at least R. We will show that at infinitely many stages it
equals R, and therefore α_R is on the true path of the construction. This
will also show that R > 0 (since we are assuming that α_0 is not on the true
path), and so I 6= ∅.

Let {σn|n ∈ ω} be the set of stages past σ for which node(σn) = α. Define
σn for n > 0 to be a true stage in case

∃x ∈We[σn]−We[σn−1]
(
We[σn] ∩ {0, . . . , x} = We ∩ {0, . . . , , x}

)
.

26

There are infinitely many true stages. (Let ρ be any stage, and x the least
element of We −We[ρ]. Let σn be least such that x ∈ We[σn] −We[σn−1].
Then σn is a true stage greater than ρ.) If σn is a true stage, then for i 6∈ I
we show that

i-restraint(Rα
e)[σ

+
n] = 0 :

Recall, this is the restraint being held for i at the end of the stage σn. Let
x be the least element of We[σn] − We[σn−1]. If Rα

e is holding i-restraint
to preserve some (P,N) witnessing Γi(We ⊕ A) ↓ at the beginning of stage
σn, this computation applied to We ⊕ A at some earlier stage σm when this
restraint was imposed, and if Rα

e does not drop that restraint during stage
σn, that is because this computation still applies at the beginning of stage σn.
If Rα

e imposes i-restraint to preserve some (P,N) witnessing Γi(We ⊕ A) ↓
during stage σn, that is because this computation applied to We⊕A at stage
σn−1 and still applies at stage σn (since we act only on computations that
have persisted through two visits to Rα

e .) In any case, if Rα
e is holding i-

restraint at the end of stage σn, it is preserving a computation (P,N) that
applied to We ⊕ A at stage σn−1 and still applies at stage σn. This means
x must be greater than the We-use of that computation, since x entered We

between these two stages. But then, since We does not change below x after
stage σn, this computation will always apply and so Rα

e will never switch
back to state (1) for i, contradicting our assumption that i 6∈ I. Therefore,

σn is a true stage & i 6∈ I ⇒ i-restraint(Rα
e)[σ

+
n] = 0;

σn is a true stage ⇒ restraint(Rα
e)[σ

+
n] = R.

Now, since I 6= ∅, there is at least one i for which Rα
e eventually remains

in state (2) preserving a computation (P,N) witnessing Γi(We⊕A) ↓. Since
Rα
e never switches back to state (1), this computation continues to apply, so

We never changes below its use. When the computation was first preserved,
computations Θβ

i (We) ↓ with the same use on We were enumerated for all the
finitely many β with Sβe,i connected to Rα

e , and these computations also con-
tinue to apply. Since Rα

e never switches back to state (0), there is at least one
β for which ∆e does not settle down on a prediction that Θβ

i (We) ↓. There-
fore ∆e does not correctly approximate the jump of We, and requirement Rα

e

is satisfied.

27

Lemma 3 If β is on the true path of the construction and Qβ = Sβe,i, then β
has an immediate successor on the true path of the construction. Either Rα

e

is satisfied for the unique α ⊂ β with Qα = Rα
e or Sβe,i is satisfied.

Sβe,i: Either Φα
e correctly predicts the convergence (or divergence)

of Γi(We⊕A), or ∆e fails to correctly predict the convergence (or
divergence) of Θβ

i (We).

If Sβe,i is on the true path, there is some stage ρ past which it is never
canceled and it is visited at infinitely many stages. There are five possible
results:

If the strategy is inert, α_n ⊂ β for some n > 0. That means that α_n
is on the true path of the construction, so the lim inf of the restraint of Rα

e

is n > 0. By Lemma 2, Rα
e is satisfied. The inert strategy never imposes any

restraint, so β_0 is on the true path.
If the strategy is in state (3) from some stage σ on, it is preserving some

computation (P,N) witnessing Γi(We⊕A) ↓ [σ] by holding restraint r. This
neighborhood condition must apply to We ⊕ A from σ on, since otherwise
the strategy would switch to state (4) the next time it was visited, so in fact
Γi(We⊕A) ↓. Furthermore, Φe correctly predicts the convergence of Γi(We⊕
A): When the strategy enters state (3) at stage σ, Φe predicts convergence,
by construction; and by Claim 3, no strategy will change this prediction,
since the computation continues to converge. Thus the requirement Sβe,i is
satisfied. The restraint past stage σ is r, so β_r is on the true path.

If the strategy is in state (4) from some stage σ on, then ∆e fails to
correctly predict the divergence of Θβ

i (We) (Θβ
i (We) ↑ by Claim 6), so Sβe,i is

satisfied. No restraint is imposed on A past stage σ, so β_0 is on the true
path.

If the strategy cycles through states (3), (4) and connection to Rα
e in-

finitely often, then ∆e fails to converge on a prediction of the convergence
of Θi(We). (Every time the strategy is disconnected from Rα

e and put into
state (3), ∆e predicts convergence, and every time the strategy leaves state
(4) and connects to Rα

e , ∆e predicts divergence.) Thus We is not low via ∆e,
and Sβe,i is satisfied. Restraint with lim inf equal to 0 is imposed on A, so
β_0 is on the true path.

If the strategy remains connected to Rα
e from some stage σ on, then

Rα
e remains in states (1) and/or (2) from some stage on, so by Lemma 2,

28

requirement Sβe,i is satisfied. No restraint is imposed on A past stage σ, so
β_0 is on the true path.

Lemma 4 The set A enumerated by this construction is a non-recursive
almost deep r.e. set.

Because the construction is recursive, A is an r.e. set. By Lemmas 1, 2
and 3, applied inductively, the true path of the construction is an infinite
branch through the tree of strategies. Every requirement Pe, Re and Se,i has
an associated strategy on the true path. By Claim 8, A is coinfinite, and by
Lemma 1 every requirement Pe is satisfied, so A is non-recursive.

For any e, let Rα
e be on the true path above strategies Sβe,i on the true

path. By Lemma 2, if Rα
e has a non-zero outcome, then Rα

e is satisfied
because ∆e fails to correctly predict the convergence of some Θγ

i (We), so ∆e

does not approximate the jump of We. Otherwise, by Lemma 3, either every
Sβe,i is satisfied because Φα

e correctly predicts the convergence or divergence
of Γi(We ⊕ A), in which case Rα

e is satisfied because Φα
e approximates the

jump of We ⊕ A, or some Sβe,i is satisfied because ∆e does not predict the

convergence or divergence of Θβ
i (We), in which case Rα

e is satisfied because
∆e does not approximate the jump of We.

Suppose W is any low r.e. set. Its jump is approximated by some ∆,
and for some e we have (W,∆) = (We,∆e). Because (by the above) Rα

e

is satisfied, Φα
e approximates the jump of We ⊕ A; that is, W ⊕ A is low.

Therefore A is almost deep.

7 Conclusion

We have shown that there is one way to capture a fragment of the definition
of deep degree. But we have only just started to explore the relationship
between the join and jump. Perhaps the most general question along this
line is “Is the existential theory of the poset of r.e. degrees with join and nth

jump, for all n, decidable?”. Lempp and Lerman in [2] have shown this is
the case without join and claim this question has a positive answer in the
case when 1 is not included in the language.

We will state and claim some results along these lines without proof.
For every non-recursive r.e. set A there is a non-high r.e. set W such that

29

A ⊕W is high. That is, joining with a non-recursive r.e. a cannot preserve
the property of non-highness.

Call a r.e. degree a n-deep if for all r.e. b

(b⊕ a)(n) = b(n).

For all n, there is no non-recursive n-deep degree. That is, joining with a
non-recursive r.e. a cannot preserve the nth jump.

However there are some possibly approachable open questions. While it
is not possible to have a non-recursive r.e. degree a such that joining with a
preserves the jump on all low2 degrees, it is conceivable that joining with a
could preserve the property of being low2. The same question can be asked
for other jump classes.

References

[1] M. Bickford and C.F. Mills. Lowness properties of r.e. sets. To appear.

[2] Steffen Lempp and Manuel Lerman. The decidability of the existential
theory of the poset of recursively enumerable degrees with jump relations.
Adv. Math., 120(1):1–142, 1996.

[3] Steffen Lempp and Theodore A. Slaman. A limit on relative genericity
in the recursively enumerable sets. J. Symbolic Logic, 54:376–395, 1989.

30

	An Almost Deep Degree
	Dartmouth Digital Commons Citation

	low.dvi

