














61



(a) (b)

Figure 8: A replication of our prior work using a NB classifier over our dataset restricted to only those electrode pairs maximally distant. For a
single electrode pair, 04 performed best, while the full set of electrode pairs does not perform significantly better. The SVM classifier, on the
other hand, performed significantly better than the NB classifier when all four electrode pairs were included.

(a) (b)

Figure 9: The top-performing electrode-pair combinations of a 10-fold cross-validation as classified by a NB classifier. The performance of
the NB classifier was flat while the SVM classifier benefits from more electrode-pair combinations.

(a) NB classifier (b) SVM classifier

Figure 10: Visualization of best performing combinations of electrode-pairs in cross validation for the NB classifier and SVM classifier.
Notice how the top-performing electrode-pair combination for the NB classifier encompassed much of the wrist, while the top-performing
electrode-pair combination for the SVM classifier encompassed the medial side of the wrist.
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Figure 11: The recognition rates for each subject in a verification
setting. The average per-subject EER was 13.10 % ± 8.67 %. A
global threshold achieved an EER of 12.7 %. The threshold, how-
ever, can be changed to suit the needs of the application (i.e., more
false-negatives or more false-positives).

trode pairs increased, our device sensed more of the geometry of
the wrist. This result shows that using electrode pairs that are not
just maximally distant (as was done in our prior work) will benefit
recognition performance.

4.4 Verification
In this experiment, we sought to understand how well our wear-

able device performs in a verification setting. Recall that verification
is the process of verifying whether the wristband’s wearer is its
owner, that is, the individual this wristband was trained to recog-
nize. To validate the performance of our system, we used a hold-out
validation where we held out the first 90% of a subject’s data and
left the remaining 10% for testing. We computed the FAR, FRR,
and EER for each subject, and we report the average and standard
deviation of these measures over all subjects.

Figure 11 shows how well our method performs for a 90 % hold-
out validation. Recall that we can vary the threshold τ for each sub-
ject and compute the corresponding FAR and FRR for each threshold.
At some threshold τ the FAR will equal the FRR, which the legend
in Figure 11 also shows as the EER. The EER varied across subjects,
but the average per-subject EER was 13.10 % ± 8.67 %. Rather
than varying the threshold τ for each subject, we can also vary a
global threshold τ over all subjects. That is, rather than computing
subject-specific thresholds, we can also compute a threshold that
works for any subject. The EER for such a global threshold was
12.7 %. In verification mode, one can easily change the threshold to
suit the needs of the application to account for fewer false-positives
or false-negatives, as Figure 11 shows. Verification mode, however,
tends perform worse than identification mode because identification
mode incorporates information about other subjects.

4.5 Longitudinal verification
To understand the longitudinal recognition rates of bioimpedance,

we collected 10 additional bioimpedance samples from three sub-
jects (1, 4, and 5) 140 days after their initial enrollment in our
wearable study. We ran a hold-out validation where the testing
dataset was equal to these new bioimpedance samples for Subjects

Figure 12: The longitudinal recognition rates of bioimpedance. We
collected data from 3 subjects 140 days after their initial enroll-
ment in our wearable study. The per-subject threshold EER was
6.93 % ± 10.60 % while the global threshold EER was 14.4 %, in-
dicating results similar to our wearable verification evaluation.

1, 4, 5. We used the last 10% of the other subjects’ data as negative
test data for these three subjects.

Figure 12 shows the results of this longitudinal verification. The
average EER for a per-subject threshold was 6.93 % ± 10.60 %
while the average EER for a global threshold was 14.4 %. The
recognition rates of Subjects 1 and 5 were similar to their recog-
nition rates in the initial verification evaluation, while Subject 4
performed better than its initial rate. Recall that these longitudinal
samples were taken immediately after each other and thus would be
similar enough that if one should match a subject’s model, then the
majority of them would. Likewise, the per-subject threshold EER
and global threshold EER did not significantly differ from the initial
verification evaluation. These results suggest that a subject’s bio-
impedance remains stable enough to be verified at least 4.5 months
later.

4.6 Energy measurements
Wearable devices require careful design for energy conservation.

Although our prototype was not optimized for low power, we report
here on its power consumption as a worst-case analysis. To capture
energy measurements, we used the Monsoon Power Monitor [21]
connected to a Windows laptop. The Power Monitor acts like a
battery and samples the current drawn every 200 µs. We down-
sampled the current measurements to 100 ms intervals via averaging.

Figure 13 shows the energy measurement of a Shimmer sampling
bioimpedance and sending these values to the smart phone. There
are five distinct phases in the energy measurement. In the first phase,
the Shimmer was idle. This consumed 6.42 mA on average. Next,
the Shimmer turned on its Bluetooth radio (at the 3.0 s dashed line)
and attempted to pair with the smart phone. On average, this phase
consumed 9.33 mA. Again, the spikes in this phase correspond to
the times when the Bluetooth radio was searching for the smart
phone. Beginning at the 13.8 s dashed line, the Shimmer and smart
phone established a connection. This phase consumed 27.0 mA on
average. Next, the smart phone instructed the Shimmer (at the 16.3 s
dashed line) to collect 12 bioimpedance samples and send them via
Bluetooth. This phase consumed 52.5 mA on average. About 30 %
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of this current was due to the actual bioimpedance sensor board,
while about 60 % was a result of the Bluetooth radio (the remaining
10 % was the overhead of just running the device). Next, the smart
phone told the Shimmer to stop sampling and disconnected at the
35.0 s and 36.5 s dashed lines, respectively. The phase between stop-
ping sampling and disconnecting consumed 26.8 mA on average.
Once again, the dominating factor was the Bluetooth radio, although
the bioimpedance sensor board required more energy than the ac-
celerometer. A Shimmer with a 450 mAh battery could last more
than a day with the Bluetooth radio on continuously and with hourly
bioimpedance recognition. In a production system, the wearable
device would also compute the classification results (training would
probably still have to be done on another device), sending only these
results via Bluetooth, thus eliminating the dominant energy cost.
The wearable device could easily last for a week. Furthermore, our
prototype system was built on top of a commercial off-the-shelf
system and so was constrained by the underlying system itself. One
could also minimize the energy profile and size by using a system-
on-chip that combines the radio and micro-controller into a single
chip [22].

Figure 14 shows the energy measurement of a smart phone en-
gaged in bioimpedance recognition. (This figure is not aligned in
time with Figure 13 because we could only measure energy from
one device at a time.) Like the measurement in Figure 13, we as-
sume the smart phone has already verified that the Shimmer is on
the same body. There are four phases in the energy measurement.
The first phase was a steady-state energy measurement of the smart
phone. This phase consumed 54.5 mA on average. In the next phase,
the smart phone turned on its Bluetooth radio at the 5.0 s dashed
line and began connecting to the Shimmer. On average, this phase
consumed 87.8 mA. At the 13.8 s dashed line, the smart phone
was connected to the Shimmer. In this phase, the smart phone col-
lected bioimpedance samples from the Shimmer. The dashed lines
at 10.5 s, 12.2 s, 13.9 s, 15.4 s, 17.0 s, 18.8 s, 20.2 s, 21.8 s, 23.5 s,
24.9 s, 26.3 s and 28.1 s correspond to the times when the Shimmer
started sensing a new electrode configuration. This phase consumed
67.9 mA on average. At the 29.6 s dashed line, the smart phone ran
the recognition algorithm, told the Shimmer to stop sensing, and
began disconnecting from the Shimmer. On average, this phase
consumed 91.8 mA. Compared to the overhead of the Bluetooth
radio and Android operating system, our bioimpedance recognition
method did not significantly impact the current drawn; thus, the
bioimpedance calculations causes negligible impact on the smart
phone.

5. DISCUSSION AND FUTURE WORK
The usefulness of a biometric relates to its ability to recognize a

person within some population. The target population is especially
important in the forensic sciences. For a long time the Federal
Bureau of Investigation believed fingerprints were unique until an
innocent man was linked to the 2004 Madrid train bombings using
fingerprint matching [30]. In this paper we emphasize that our tar-
get population size is that of a household; that is, we ought to be
able to distinguish individuals in a household. While bioimpedance
may be able to distinguish individuals in larger populations, such
explorations remain future work. We believe that tetra-polar sens-
ing combined with different electrode pair combinations will yield
recognition rates on par with biometrics like ECG. One could also
combine identification and verification to improve robustness. For
example, we could use the identification algorithm to identify who
is using the device (like a username) and then use the verification
algorithm to decide if it is that person with sufficient probability
(like a password).

One advantage of the wrist location is that the wristband is placed
in about the same location and at about the same orientation every
time it is worn. We experimented with changes in wristband orienta-
tion, and determined that it does have an effect on the bioimpedance
samples, depending upon the amount of rotation about the wrist. A
better physical design might reduce this problem by ensuring the
proper band orientation on the wrist. If not, it may be possible to
use kinematic sensors to determine the orientation of the band and
compensate for different orientations. It might also be possible to
compute rotation- and reflection-invariant features. The details of
such computations are left for future work.

We did not explicitly consider variations in the bioimpedance
due to changes in skin temperature (e.g., for a person with a fever,
or who steps outside on a cold winter day), or due to changes in
diet (e.g., level of hydration or blood sugar). These and other body
conditions may have a measurable impact on bioimpedance that
could make it more difficult to develop a robust model for each
subject. It might be the case, for example, that a change in blood
glucose alters bioimpedance samples measured at the wrist. To be
truly confident in this method we need to explore the stability of
bioimpedance over weeks or even months, to sample a larger number
of subjects, and to explicitly and implicitly explore a broader range
of environmental conditions than we captured in our day-long field
experiment. We plan to perform such validations in the future.

Although we designed the bracelet for ourselves, a few subjects
complained about the tightness of the bracelet. Future bracelets
would be designed with different wrist sizes in mind and with better
electrodes. Some subjects complained that the electrodes pulled the
hair on their wrist. Other subjects mentioned that the device was too
bulky to fit under a coat. Our reliance on the Shimmer platform is
the source of much of the bulk. Future bracelets could incorporate
their own storage, processing, communication, and power without
relying on external sources. Custom silicon would also allow model
training to be done on the wearable itself.

Our method will suffice for the purpose of identifying the bracelet’s
wearer, in many interesting applications. In some applications, how-
ever, there may be individuals with the motivation to fool the sensor
into believing that the wearer is a different person – for example,
if the bracelet is used as part of a biometric authentication system,
or if the person wishes to have body-area sensor data collected un-
der someone else’s identity. We believe, however, that it would
be exceptionally difficult to ‘forge’ another person’s bioimpedance.
In principle, an adversary could capture the desired person’s bio-
impedance (by hacking our bracelet to extract the data) and then
construct a bracelet liner that ‘replays’ the impedance using fixed
resistors, but this attack would be difficult to accomplish given
the frequency-dependent nature of bioimpedance. More so, the
threshold for verification algorithms can be chosen to produce more
false accepts (i.e., affects security) versus false rejects (i.e., affects
usability), and so is a policy decision.

Finally, there are several ways the current design could be opti-
mized for lower cost or reduced energy consumption. The current
wristband includes 8 electrodes yet we use only two at a time for
measuring bioimpedance. It would be worthwhile exploring whether
effective models can be built using only a single pair, or perhaps
two pairs, of electrodes. Furthermore, we measured bioimpedance
across a wide sweep of 50 frequencies; it may be possible to focus
on a smaller number of frequencies, decreasing the energy and time
needed for each measurement.

Rather than using bioimpedance itself as a presence detection
mechanism (Section 2.4), we could integrate capacitive sensing
technologies into our device. In particular, the SemTech SX9300
is an ultra low power, Specific Absorption Rate (SAR) controller
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Figure 13: An energy measurement of a Shimmer when collecting bioimpedance data for recognition. The dashed line at 3.0 s is when the
Shimmer turned on its Bluetooth radio. The dashed line at 13.8 s is when the smart phone connected to the Shimmer. The dashed line at 16.3 s
is when the smart phone told the Shimmer to start sensing bioimpedance. The dashed line at 35.0 s is when the smart phone told the Shimmer
to stop sensing bioimpedance. The dashed line at 36.5 s is when the smart phone disconnected from the Shimmer.
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Figure 14: Energy measurement of a Nexus S smart phone when running bioimpedance recognition. The dashed line at 5 s is when the smart
phone turned on its Bluetooth radio. The dashed line at 10.1 s is when the smart phone and Shimmer established a connection. The dashed
lines at 10.5 s, 12.2 s, 13.9 s, 15.4 s, 17.0 s, 18.8 s, 20.2 s, 21.8 s, 23.5 s, 24.9 s, 26.3 s and 28.1 s are when the Shimmer started sensing a new
electrode configuration. The dashed line at 29.6 s is when the smart phone classified the bioimpedance samples and disconnected. The dashed
line at 32.9 s is when the smart phone turned off its Bluetooth radio.

that can discriminate between the human body and inanimate ob-
jects [25]. It distinguishes a human body from inanimate objects by
measuring the permittivity (a measure of how freely charged par-
ticles can rotate and become polarized when subject to an electric
field) of the space near small capacitive sensors (essentially small
land areas on a PCB). The integrated circuit comes in a 3 mm x
3 mm x 0.6 mm QFN-20 package and consumes only 459 µW in
active mode. It can generate an interrupt to wake a host micro-
controller upon a “body close” or a “body far” event, allowing the
controller to sleep until human presence is detected or to react to
wristband removal. To reduce power costs further it has a doze mode
that can scan for capacitive events at a programmable rate of 30 ms
to 400 ms per scan while consuming just 48.6 µW.

Alternatively, we could integrate electric-field sensing technolo-
gies into our device. Cohn et al. describe such a low-power wake-up
method using electric-field sensing technology [7]. Their sensor,
like ours, requires contact with the skin, and using their low-power
wake-up method only requires 9.3 μW total, which is three orders of
magnitude lower power than required to operate our bioimpedance
sensor. It would be easy to adopt this approach for use in our device.

Readers interested in more details about our device or its evalua-
tion may wish to review Cornelius [8, Chapter 3].

6. RELATED WORK
There have been many biometrics proposed in the literature, how-

ever not all of them are suitable for a system such as we describe.

Most biometrics are unsuitable for our system because they cannot
be captured continuously or they need to interrupt the user. Finger-
print recognition for example, requires the users to swipe or hold
their fingers on a sensor. Electrocardiogram (ECG) recognition,
while continuous, requires an electrical connection across the heart.
Electrodes could be integrated into a shirt, however current form
factors require the user to touch two electrodes using both hands.

Bioimpedance is often used to measure a person’s body-fat per-
centage, since they are proportional to each other; several bathroom
scales measure both weight and body-fat percentage. There has
only been limited use of bioimpedance in support of biometrics,
however. Ailisto et al. used body fat (as measured by bioimpedance)
and weight to reduce error rates of fingerprint biometrics from 3.9%
to 1.5% [1]. Others have used bioimpedance to detect liveness in fin-
gerprint biometrics – see, for example, Martinsen et al. [18] – since
a fingerprint reader can be easily fooled; such techniques could be
incorporated into our system as well.

We are the first to suggest bioimpedance itself as a biometric. Our
prior experiments provided promising evidence that bioimpedance
could be a viable method for distinguishing among individuals
in a small cohort, such as the members of a household. Those
experiments, however, were based on a few samples of each user,
under controlled laboratory conditions, using a large bench-top
prototype [10]. In this paper we report our success in building such
a sensor in the form of a wearable wristband, and demonstrate its
potential outside of the lab, with each subject wearing the wristband
for the full day. Rasmussen et al. [23] report similar results to ours
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but for measurements across the whole body (hand-to-hand) using
a non-wearable device intended to be integrated to devices like a
laptop or automated teller machine.

Others have used capacitive sensing to differentiate subjects using
a capacitive touchscreen. Vu et al. [29] require the subject to wear a
special ring that would inject a signal through the subject’s finger
and into the tablet screen while they are touching the screen. They
could encode the ring wearer’s identity into this signal, but the ring
has no ability to biometrically identify its wearer. Indeed, this signal
could be used to communicate anything to the tablet while the user
touches the screen, although the data rate (4 bit/s to 5 bit/s) limits
the amount of information that can be communicated. Harrison et
al. [15] show how to differentiate between subjects using a capacitive
touchscreen. Rather then identifying each subject, they focus on
determining and tracking the number of users touching the screen.
They accomplish this by modifying the touchscreen to measure the
impedance between the user and ground across many frequencies.
By doing this, they differentiate between subjects interacting with
the touchscreen.

Finally, Srinivasan et al. [27] used height sensors to distinguish
the subjects of a household. Although height might not be a distin-
guishing factor for large populations, they showed it is sufficiently
distinct for a population the size of a household. Our cohort size
was inspired by their household population approach. Our method,
however, is suitable for wearable sensors that can be used anywhere,
even outside of the home.

7. SUMMARY
In this paper we present a wearable system that can continuously

recognize the person wearing our system. Our system is intended
for applications that need to confirm that the wearer is indeed the
device owner, or that need to distinguish among a small cohort
such as the members of a household. To recognize people, our
system uses a custom-designed bioimpedance sensor that is used
for biometric identification. In contrast to our prior work, we show
the effectiveness of our system by prototyping it in the form of
a wearable, wrist-worn device with electrodes embedded on the
inside of the wristband. This wristband was connected to a custom
designed impedance-measuring module we built for the Shimmer
research platform. We evaluated the ability of our system to correctly
identify its wearer within a cohort of eight subjects (modeling a
household of eight people). We found that the device was successful
in recognizing its wearer almost 98% of the time using data collected
outside of the lab. Furthermore, we show that our recognition
method does not adversely affect the battery-life of a smart phone
and that our wearable bioimpedance sensor could easily last for a day
or longer. Finally, showing that a wearable bioimpedance system
works provides the foundation for future studies of bioimpedance as
a biometric.
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