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Practical Prefetching Techniques for Parallel File Systems

David Kotz

Dept. of Math and Computer Science
Dartmouth College
Hanover, NH 03755-3551
David.Kotz@Dartmouth.edu

Abstract

Improvements in the processing speed of multipro-
cessors are outpacing improvements in the speed of
disk hardware. Parallel disk I/0 subsystems have been
proposed as one way to close the gap between proces-
sor and disk speeds. In a previous paper we showed
that prefetching and caching have the potential to de-
lwver the performance benefits of parallel file systems to
parallel applications. In this paper we describe exper-
iments with practical prefetching policies, and show
that prefetching can be implemented efficiently cven
for the more complex parallel file access patterns. We
also test the ability of these policies across a range of
architectural parameters.

1 Introduction

As computers grow more powerful, it becomes in-
creasingly difficult to provide sufficient I/O bandwidth
to keep them running at full speed for large problems,
which may consume immense amounts of data. Disk
I/O has always been slower than processing speed,
and recent trends have shown that improvements in
the speed of disk hardware are not keeping up with
the increasing raw speed of processors. This widen-
ing access-time gap is known as the I/O crisis [14, 20].
The problem is compounded in typical parallel archi-
tectures that multiply the processing and memory ca-
pacity without balancing the I/O capabilities.

The most promising solution to the I/O crisis is
to extend parallelism into the I/O subsystem. One
such approach is to connect many disks to the com-
puter in parallel, spreading individual files across all
disks. Parallel disks could provide a significant boost
in performance — possibly equal to the degree of par-
allelism, if there are no significant bottlenecks in the
I/0 subsystem, and if the 1/O requests generated by
applications can be mapped into lower-level operations
that drive the available parallelism. Thus, the first
challenge to the designers of a multiprocessor file sys-
tem is to configure parallel disk hardware to avoid
bottlenecks (e.g., shared busses), and to avoid further
bottlenecks in the system software. An effective file
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system for a multiprocessor must itself be fully paral-
lel to scale with additional processors or disks. The
second challenge is to make this extensive disk hard-
ware bandwidth easily available to application pro-
grams. To meet these challenges we propose a highly
parallel file system implementation that incorporates
caching and prefetching as a means of delivering the
benefits of a parallel I/O architecture through to the
user programs.

We expect a file cache to be useful in multiproces-
sor file systems for the same reason as in uniprocessor
file systems: locality in file reference behavior. In-
deed, we expect multiprocessor file access patterns to
have increased opportunities for locality. Interprocess
locality can arise when all processes in a multi-process
program read the same file in some coordinated fash-
ion (e.g., each reading different small records from the
same block).

If the file access pattern is sequential, the file sys-
tem can read blocks into the cache before they are
requested, making them quickly available when they
are requested. This extension to caching is known
as prefetching. Prefetching does not work for all ac-
cess patterns, of course, but it should be beneficial for
common sequential patterns. In [9], we showed that
prefetching has significant potential to improve read
performance in multiprocessor file systems. We mea-
sured the potential using an idealistic prefetching pol-
icy that was provided with the complete file access pat-
tern in advance. In practice, of course, the prefetching
policy does not have access to the file access pattern
in advance, and instead must base its prefetching de-
cisions on a real-time view of the access pattern. This
leads to several questions:

e Given that we know prefetching has potential,
is 1t possible to design and implement practi-
cal prefetching policies? A practical policy must
be both effective, choosing the correct blocks to
prefetch, and efficient, having low overhead. This
question is the primary focus of this paper.

e Can our practical policies achieve their full po-
tential, as determined in [9] by our unrealizable
“full-knowledge” policy?

e Can we design general policies that are practical
for many different types of access patterns?
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e Do the prefetching policies and implementation
scale well, given more processors, more disks, or
a wider gap between processor speed and disk ac-
cess speed?

To answer these questions, we used the testbed
developed for [9]. The testbed implemented many
prefetching and caching policies on a real multipro-
cessor, and simulated the parallel disk T/O. We eval-
uated many prefetching policies on a wide variety of
workloads and architectural parameters.

In the next section we provide more background
information. In Section 3 we describe the testbed, the
workload, and the experimental methods. Section 4
defines our practical prefetching policies. In Section 5
we present the experiments, performance measures,
and results. Section 6 concludes.

2 Background

Much of the previous work in I/O hardware par-
allelism has involved disk striping. In this tech-
nique, a file is interleaved across numerous disks and
accessed 1n parallel to simultaneously obtain many
blocks of the file with the positioning overhead of one
block [16, 7, 14]. All of these schemes rely on a single
controller to manage all of the disks.

For multiprocessors, one form of parallel disk ar-
chitecture is based on the notion of parallel, indepen-
dent disks, using multiple conventional disk devices
addressed independently and attached to separate pro-
cessors. The files may be interleaved over the disks,
but the multiple controllers and independent access to
the disks make this technique different from disk strip-
ing. Examples of this I/O architecture include the
Concurrent File System [15, 6] for the Intel iPSC/2
multiprocessor, and the Bridge file system [4, 3] for
the BBN Butterfly multiprocessor.

Caching commonly-used disk blocks can signifi-
cantly improve file system performance [20], and in-
deed is a technique used in most modern file systems.
Prefetching 1s also successful in uniprocessor file sys-
tems [20, 18, 19, 17]. The central idea behind prefetch-
ing is to overlap some of the I/O time with compu-
tation by issuing disk operations before they are re-
quested. With parallel disk hardware, however, we
expect prefetching to also overlap 1/O with 1/0, ob-
taining even larger benefits.

File access patterns have never been studied for par-
allel computers, but have been studied extensively for
uniprocessors [5, 12]. Floyd [5] studied file access pat-
terns in a Unix system, and found that 68% of files
opened for reading are completely read, usually se-
quentially. Over 90% of all files opened are opened
read-only or write-only. A classic Unix file system
study [12] found that 90% of all files are processed
sequentially, either through the whole file (70% of all
accesses) or after only one seek. Parallel file access is
discussed by Crockett [2]. Although he did not study
an actual workload, he related file access patterns to
possible storage techniques. Many of his basic file ac-
cess patterns are reflected in our workload model.

We concentrate on scientific workloads, character-
ized by sequential access to large files [13, 11]. De-

spite the lack of any parallel file access study, we ex-
pect there to be enough sequential access in the par-
allel file access patterns of scientific applications for
prefetching policies that assume sequential access to
be successful.

3 Models and Methods

Our methodology is experimental, using a mix of
implementation and simulation. We implemented
a file system testbed called RAPID-Transit (“Read-
Ahead for Parallel Independent Disks”) on an ac-
tual multiprocessor. Since the multiprocessor does
not have parallel disks, they are simulated. Unfor-
tunately, few parallel programs use parallel 1/O and
so we did not have access to a real workload. Thus,
we were forced to use a synthetic workload. The syn-
thetic workload captures such nuances of real work-
loads as sequentiality, regularity, and inter-process in-
teractions. It consists of real parallel programs that
generate file requests and may incur synchronization
delays. The testbed executes the synthetic applica-
tion, measuring the elapsed real time and other sig-
nificant statistics. This implementation of the policies
on a real parallel processor, combined with real-time
execution and measurement, allows us to directly in-
clude the effects of memory contention, synchroniza-
tion overhead, inter-process dependencies, and other
overhead, as they are caused by our workload under
various management policies. This method allows us
to evaluate whether practical prefetching policies can
be implemented.

3.1 Models and Assumptions

Architecture: The architecture on which we base
our research efforts is a multiple instruction stream,
multiple data stream (MIMD) shared-memory multi-
processor. A subset of the problems and many of our
proposed solutions (although not our implementation)
may apply to message-passing architectures as well.

We represent the disk subsystem with parallel, in-
dependent disks. We assume an interleaved mapping
of files to disks, with blocks of the file allocated round-
robin to all disks in the system. The file system han-
dles the mapping transparently, managing the disks
and all requests for I/O. There is a file system man-
ager running on each processor. This spreads the 1/O
overhead over all processors and allows the use of all
processors for computation, rather than reserving a
set of processors exclusively for 1/0.

Workload: Parallel file systems and the applica-
tions that use them are not sufficiently mature for
us to know what access patterns might be typical.
Parallel applications may use patterns that are more
complex than those used by uniprocess versions of the
same application.

We work with file access patterns, rather than disk
access patterns. That i1s, we examine the pattern of
access to logical blocks of the file rather than physical
blocks on the disk. The file access pattern is the best
place to look for sequentiality, since disk access pat-
terns are complicated by the layout of logical blocks
on the disk and by the activities of multiple files. Thus



we make no assumptions of disk layout. Note also that
the application is accessing records in the file, which
are translated into accesses to logical file blocks by the
interface to the file system. The file system internals,
which are responsible for caching and prefetching, see
only the block access pattern.

In our research we do not investigate read/write
file access patterns, because most files are opened for
either reading or writing, with few files updated [5, 12].
We expect this to be especially true for the large files
used 1n scientific applications. This paper covers read-
only patterns, whereas write-only patterns are covered
in [10, 8].

All sequential patterns consist of a sequence of ac-
cesses to sequential portions. A portion is some num-
ber of contiguous blocks in the file. Note that the
whole file may be considered one large portion. The
accesses to this portion may be sequential when viewed
from a local perspective, in which a single process ac-
cesses successive blocks of the portion. We call these
locally sequential access patterns, or just local access
patterns. This is the traditional notion of sequential
access used in uniprocessor file systems.

Alternatively, the pattern of accesses may only look
sequential from a global perspective, in which many
processes share access to the portion, reading disjoint
blocks of the portion. We call these globally sequen-
tial access patterns, or just global access patterns. In
this view each process may be accessing blocks within
the portion in some random or regular, but increas-
ing order. If the reference strings of all the processes
are merged with respect to time, the accesses follow a
(roughly) sequential pattern. The pattern may not be
strictly sequential due to the slight variations in the
global ordering of the accesses; it is this variation that
makes global patterns more difficult to detect.

In addition, the length of portions (in blocks) may
be regular, so the file system could predict the end of
a portion and not prefetch past it. The difference be-
tween the last block of one portion and the first of the
next may also be regular (a regular skip), allowing the
system to prefetch the first blocks of the next portion.

We use eight representative parallel file access pat-
terns. Four of these are local patterns, three are global
patterns, and one is random.

Ilw Local Whole file: every process reads the entire
file from beginning to end. It is a special case of
a local sequential pattern with a single portion.

Ifp Local Fixed-length Portions: each process reads
many sequential portions. The sequential por-
tions have regular length and skip, although at
different places in the file for each process.

Irp Local Random Portions: like lfp, but using por-
tions of irregular (random) length and skip. Por-
tions may overlap by coincidence.

seg Segmented: the file is divided into a set of non-

overlapping contiguous segments, one per process.
Each process thus has one sequential portion.

gw Global Whole file: the entire file is read from
beginning to end. The processors read distinct
records from the file in a self-scheduled order, so
that globally the entire file is read exactly once.

gfp Global Fixed-length Portions: (analogous to 1fp)
processors cooperate to read what appears glob-
ally to be sequential portions of fixed length and
skip.

grp Global Random Portions: (analogous to lrp)
processors cooperate to globally read sequential
portions with random length and skip.

rnd Random: records are accessed at random. This
represents all patterns that are too complex to be
represented as sequential in any way.

Note that these patterns are not necessarily rep-
resentative of the distribution of the access patterns
actually used by applications. We feel that this set
covers the range of patterns likely to be used by sci-
entific applications.

3.2 Methods

The RAPID-Transit testbed is a parallel program
implemented on a BBN GP1000 Butterfly parallel pro-
cessor [1]. The testbed is heavily parameterized, and
incorporates the synthetic workload, the file system,
and a set of simulated disks. The file system allocates
and manages a buffer cache to hold disk blocks. See [8]
for details.

Prefetching is attempted whenever the processor is
idle. Assuming a commonly used processor-allocation
strategy of one processor for each user process [21], the
processor becomes idle whenever its assigned process
is idle, usually waiting for disk activity or synchroniza-
tion to complete. To decide on a block to prefetch, the
prefetching module calls a predictor, which encapsu-
lates a particular policy, a pattern-prediction heuris-
tic. The predictor makes its predictions based on the
observed reference history of the application.

The base for all of our evaluations of prefetching
policies is the simple NONE policy, which is equiva-
lent to not prefetching. We also use an off-line predic-
tor called EXACT, which is provided with the entire
access pattern in advance. (This is the approach used
in [9].) The advance knowledge makes it a perfect
predictor, since it makes no mistakes and requires lit-
tle overhead. However it is not realistic, since a real
predictor does not know the entire access pattern in
advance. In this sense, EXACT gives us a rough upper
bound on the potential of prefetching. (EXACT does
have some limitations, however: in the lrp and grp
patterns, it does not prefetch past the end of a por-
tion until a demand fetch has established the location
of the next sequential portion, and in the rnd pattern,
EXACT does no prefetching, since none is reasonably
possible.) We use these two simple predictors to eval-
uate our on-line predictors, described below.

4 Practical Predictors

Our strategy is to begin with a coarse comparison
of many predictors on all the patterns, for a relatively



limited set of parameters. Then we evaluate the most
generally practical predictors on a wide range of pa-
rameters, examining the scalability of the predictors to
other architectural situations. We begin with predic-
tors for local patterns; then consider global patterns.

4.1 Local Pattern Predictors

We present four predictors that are designed for
predicting local access patterns. The fourth is a hy-
brid of the first three simpler predictors. These pre-
dictors monitor the individual process reference pat-
terns, looking for sequential access. Since the process
reference patterns are independent, these predictors
are totally concurrent.

OBL — One-Block Look-ahead: This algorithm
(as in [20]) always predicts block ¢ 4+ 1 after block ¢ is
referenced, and no more.

IBL — Infinite-Block Look-ahead: IBL predicts
that ¢ + 2,2+ 3,... will follow a reference to ¢, and
recommends that they all be prefetched in that or-
der. Whether they are actually prefetched depends
on the currently available resources. IBL is a logical
extension of OBL, and is designed for the 1w and seg
patterns.

PORT — Portion Recognition: This algorithm
attempts to recognize sequential portions. Essentially,
PORT tries to handle the 1fp access-pattern family. It
watches for a regular portion length and regular por-
tion skip. Like IBL, it tries to predict the pattern fur-
ther ahead than the next reference, in order to prefetch
more blocks. Unlike IBL, however, it limits the num-
ber of blocks that it predicts into the future (to limit
mistakes), and it may also jump portion skips (if the
portions are regular). In random patterns (short por-
tions with irregular skip) PORT predicts nothing.

IOPORT — IBL/OBL/PORT: This predictor is
a hybrid of the other three, attempting to combine
the best of each. It begins as IBL, to treat lw and
seg patterns efficiently, but switches to OBL on the
first non-sequential reference. The conservative OBL
is more appropriate when the pattern has unexpected
non-sequential accesses. If regular portions are de-
tected, then PORT is used.

4.2 Global Pattern Predictors

To recognize and predict globally sequential pat-
terns at runtime is more difficult. The predictor must
collect and examine the global reference history by
merging local reference histories. Even then it is dif-
ficult to recognize sequential access, since the blocks
in the pattern may be referenced in only a roughly
sequential order due to variations in process speed.
In addition, efficient, concurrent implementations are
difficult due to the need for global decision making.

To determine the importance of the tradeoff be-
tween accuracy and efficiency, we compare a highly
accurate (but inefficient) predictor with a less accurate
(but efficient) predictor. Both predictors are concur-
rent, in that several processors may be active simulta-
neously, with internal synchronization controlling ac-
cess to shared state information. The first, called

GAPS, works hard to detect sequentiality in the global
access pattern before doing any prefetching. The sec-
ond, called RGAPS, assumes that the pattern is se-
quential unless it appears random. Detecting random
access 18 much simpler and more concurrent, although
less accurate, than detecting sequential access. Once
they decide to prefetch, both predictors track all ac-
cesses and prefetches, and suggest blocks for prefetch-
ing that have not yet been fetched. In this mode they
are capable of recognizing sequential portions, much
like PORT, with unexpected non-sequential accesses
requiring re-evaluation of the pattern. See [8] for de-
tails on these predictors.

5 Experiments

We begin with some details of our experiments
and measures, then give results from experiments that
compare the practical predictors against EXACT and
NONE. Finally, we evaluate the scalability of the most
general predictors.

5.1 Experimental Parameters

In all of our experiments, we fix most of the pa-
rameters and then vary one or two parameters at a
time. The parameters described here are the base from
which we make other variations. Each combination of
parameters represents one test case.

There were 20 processes running on 20 processors.
We generated a set of access patterns to be used by
all predictors, including EXACT and NONE. The pat-
terns all contained exactly 4000 record accesses, where
the record size was one block. The block size was
1 KByte. In local patterns this was divided up as 200
references per process. Note that in most patterns this
translates to 4000 blocks read from the disk, but in 1w
only 200 distinct blocks are read since all processes
read the same set of 200 blocks. The cache contained
80 one-block buffers.

After each record was read, delay was added in
some tests to simulate computation; this delay was
exponentially distributed with a mean of 30 msec. All
other tests had no delay after each read, simulating an
I/O-intensive process.

The file was interleaved over 20 disks, at the gran-
ularity of a single block. Disk requests were queued in
the appropriate disk queue. The disk service time was
simulated using a constant artificial delay of 30 msec,
a reasonable approximation of the average access time
in current technology for small, inexpensive disk drives
of the kind that might be replicated in large numbers.

5.2 Measures

The RAPID-Transit testbed records many statistics
intended to measure and interpret the performance
of prefetching. The primary performance metric for
measuring the performance of an application is the
total execution time. This, and all time measures in
the testbed, is real time, including all forms of over-
head. We also record the average time to read a block,
the total synchronization time, the cache hit ratio,
prefetch overhead, and many others. In [9] we found
that measures such as cache hit rate and average block



read time are improved with prefetching, but are not
good indicators of overall performance. Total execu-
tion time incorporates those measures as well as other
effects, such as synchronization delays, and thus it is
the best measure of overall performance.

A note on the data: Every data point in each ex-
periment represents the average of five trials. The
coefficient of variation (cv) is the standard deviation
divided by the mean (average). For all experiments
in this paper, the cv was less than 0.09 (usually much
less), meaning that the standard deviation over five
trials was less than 9% of the mean. In many places
we give the maximum cv for a given data set.

Normalized Performance: Due to limited data
space we cannot present all of the experimental data
(but see [8]). Instead, we use a summarizing measure.
Since EXACT represents the potential for prefetch-
ing performance, we evaluate our on-line predictors in
terms of their relative performance to EXACT. QOur
measure 18 the normalized performance, the ability of
the on-line predictor to improve on NONE compared
to EXACT’s ability to improve on NONE. Thus, if £,
is the execution time for EXACT, ¢, is the time for
NONE, and ¢ is the time for some other predictor, the
normalized performance of this other predictor is

t—1n
np = { :tle_tn

In the normal case ¢ > t., so the normalized perfor-
mance is 1 when the predictor in question does as well
as EXACT, zero when it does only as well as NONE,
and negative when slower than NONE. If both EX-
ACT and the on-line predictor are slower than NONE,
the normalized performance may also be greater than
1. Thus, it 1s best to have a normalized performance
near 1. The case ¢t < t, is considered an anomaly,
since an on-line predictor should not run faster than
EXACT (although it did sometimes happen for subtle
reasons [8]). We assign these cases a normalized per-
formance of 1, since they have certainly reached the
full potential of EXACT. The normalized performance
is undefined for the rnd pattern, in which ¢t. = t,,.

ift>t,
otherwise

The Ideal Execution Time: We also compare the
experimental execution time to a simple model of the
ideal execution time. The total execution time 1s a
combination of the computation time, the I/O time,
and overhead. In the ideal situation, there is no over-
head, and either all of the I/O is overlapped by compu-
tation or all of the computation is overlapped by 1/0.
Thus, the ideal execution time is simply the maximum
of the I/O time and the computation time. This as-
sumes that the workload is evenly divided among the
disks and processors and that the disks are perfectly
utilized. No real execution of the program can be
faster than the ideal execution time. With the base pa-
rameter values, both the I/O and computation times
are 6 seconds, and thus the ideal execution time 1s also
6 seconds. The ideal 1/O time for lw is shorter, only
0.3 seconds, since it only reads 200 blocks from disk.

5.3 Results for Local Pattern Predictors

We measured the performance of the local pattern
predictors on the synthetic workload, using the exper-
imental parameters defined in Section 5.1, and varying
the pattern, predictor, synchronization style, and com-
putation (either some computation or no computa-
tion), each variation forming a different test case. The
primary measure was total execution time, summa-
rized with the normalized-performance metric. Fig-
ure 1 plots the distribution of normalized perfor-
mance that each predictor achieved over the set of test
cases, in the form of a cumulative distribution func-
tion (CDF). Recall that the desired normalized perfor-
mance is 1.0, indicating that the on-line predictor per-
formed as well as EXACT. IBL’s extreme negative and
positive values indicate that it was much slower than
EXACT in some cases. OBL had relatively few val-
ues near one. IOPORT had the best minimum value,
with only two negative points, and was within 5% of
EXACT’s performance in over half of all test cases.

In the rnd pattern, which is not included in Fig-
ure 1, PORT and IOPORT were within 2% of the
execution time for EXACT (NONE) in all test cases.
They recognized the random pattern as an irregular
set of one-block portions, and did no prefetching. OBL
and IBL, however, prefetched blindly, running up to
3.5 times slower than NONE. Thus, IOPORT is a good
general-purpose local predictor: excellent performance
most of the time, mediocre performance some of the
time, and never any terrible performance.

All of the above experiments used a one-block
record size. With non-integral record sizes (i.e., not
a multiple of the block size), some blocks are rerefer-
enced. All of the above predictors handle such reref-
erences by ignoring them, and thus the performance
did not vary much with the record size (we experi-
mented with IOPORT for record sizes varying from
one-quarter block to 10 blocks). For small records
(less than one block) the overhead of the rereferences
was enough to slow down execution by a few percent
in some cases (NONE was the most affected, slowing
down by 8% in one case).

5.4 Results for Global Pattern Predictors

Using a set of tests similar to those for local pre-
dictors, except using global patterns, we measured the
performance of GAPS and RGAPS on the synthetic
workload. We plot the CDFs of the distributions of
the normalized performance in Figure 2. The low-
performance (negative) cases were all from the grp
pattern, where GAPS and RGAPS were slower than
NONE. In general, however, half of the GAPS cases
reached at least 0.62 normalized performance (i.e.,
62% of the performance improvement of EXACT), and
half of the RGAPS cases reached at least 0.71 normal-
ized performance. In the rnd pattern, which is not
included in Figure 2, GAPS and RGAPS were both
within 2% of the the EXACT (NONE) time, which
is essentially no difference. Thus, they both handled
random patterns efficiently.

All of the above experiments used a one-block
record size. With longer records (multiple blocks),
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Figure 1: The normalized performance for the local
predictors on all patterns except rnd. A normal-
ized performance of 1.0 indicates that the predictor
matched (or exceeded) EXACT’s performance, and
a negative (or large positive) number indicates that
it was slower than NONE. IBL’s range was -18 to
20. (Total execution time cv < 0.058.)

it became more difficult to detect sequentiality in the
block access pattern. GAPS, in fact, failed for records
larger than four blocks, and ran up to 10 times slower
than without prefetching, because of its failed efforts
to recognize the sequentiality. RGAPS had little dif-
ficulty with varying record size, closely following EX-
ACT’s performance. Thus RGAPS was a more gener-
ally successful predictor than GAPS.

5.5 Scalability
Once we knew that IOPORT and RGAPS were rea-

sonably general and successful predictors for the vari-
ous access patterns in our workload, we evaluated their
practicality across a wide range of architectural vari-
ations. In particular, we varied the number of proces-
sors, the number of disks, and the ratio of processor
speed to disk speed. We give a sample of the results
here, along with the key conclusions; see [8] for a full
presentation.

Number of processors: We varied the number of
processors to test the scalability of the file system soft-
ware, including the predictors. By holding the number
of disks constant at 20, this also allowed us to study
the effects of having more or fewer processors than
disks, since the preceding experiments always had 20
processors and 20 disks. (Essentially the same con-
clusions were found when holding the number of pro-
cessors at 20 and varying the number of disks from 1
to 35.) The total amount of work (blocks read, com-
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Figure 2: The normalized performance for GAPS
and RGAPS on all patterns except rnd. (Total ex-
ecution time cv < 0.072.)

putation time) was also held constant. The ideal ex-
ecution time was then max(6, %) seconds, where C

was the total computation time in seconds, and p was
the number of processors. We used either C' = 0 or
C' = 120 seconds, as before.

Figure 3 shows the results for the lfp pattern with
computation, for various numbers of processors. The
ideal execution time decreased with more processors
until, limited by /0, it leveled off to 6 seconds at 20
processors. EXACT followed this curve closely, and
IOPORT nearly matched EXACT (normalized per-
formance 0.86-0.96 throughout). NONE was much
slower, particularly for few processors. NONE could
not use more disks than it had processors, so it was
unable to use the full parallel disk bandwidth or to
overlap computation and I/O. This graph shows that
prefetching successfully overlapped computation and
I/0, and scaled well (at least up to 32 processors).
The results for other patterns with computation were
similar Susing RGAPS instead of IOPORT in global

patterns).

Figure 4 shows the results for the I/O-bound gfp
pattern. The ideal execution time is a constant 6 sec-
onds. NONE could not use more disks than it had
processors, and thus could not use the full parallel disk
bandwidth. However, prefetching was able to use all of
the disk bandwidth with only a few processors. The
results for gw, Ifp, and seg were similar. Prefetch-
ing had more difficulty in the grp and lrp patterns,
though still faster than not prefetching for less than
20 processors. In the lw pattern, NONE was limited
to one disk at a time, regardless of the number of pro-
cessors, while prefetching used all of the disks.
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Figure 3: Processors variation. (cv < 0.016)
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Figure 4: Processors variation. (cv < 0.050)

When there were more processors than disks,
NONE was sometimes slightly faster than all other
predictors. At this point the parallelism alone was
enough to keep the disks occupied, whereas prefetch-
ing required more overhead for the same task, and
also made mistakes. Since we expect that most mul-
tiprocessors will (and do) have more processors than
disks, this 1s somewhat of a negative result. However,
the small slowdown caused by prefetching when there
were more processors than disks is a small price to pay
for the many other cases where prefetching had signifi-
cant benefits (e.g., small record sizes, fewer processors
than disks, the lw pattern, or unbalanced disk loads).

In all, the IOPORT and RGAPS predictors were
practical across the variation of the number of pro-
cessors (there is not enough evidence to extrapolate
RGAPS’s scalability past 34 processors). They had
particularly good performance when there were fewer
processors than disks, and only slightly negative per-
formance in some cases when there were more proces-
sors than disks. In any application, the bottleneck will
limit performance, so for higher performance both the
number of processors and the number of disks must
be increased, with the exact ratio depending on the
expected access patterns and computational loads.

Disk access time: It is expected that both proces-
sor speed and disk speed will increase with time, but
that the increase in processor speed will outstrip any
increases in disk speed, making disks appear slower
to processors than they are today. We were not able
to change the processor speed, since we were using a
single type of machine, but (since the disks were sim-
ulated) we could easily change the disk access time.
Thus we could test the behavior of prefetching as the
access-time gap changed.

As an example, Figure 5 plots the total execution
time for gfp as a function of the disk access time.
The ideal execution time is linear in the disk access
time, since this pattern contains no computation. EX-
ACT followed the ideal curve, and the others at least
matched its slope except for the fastest disks, indicat-
ing only a constant overhead. With faster disks rel-
ative to the processor speed (an unlikely occurrence
given architectural trends), RGAPS broke down and
became slower than NONE. This i1s because the ben-
efits of prefetching were reduced with the decreased
disk access time, but the costs of prefetching (a func-
tion of processor speed) were unchanged. For slower
disks, the success of prefetching scaled directly with
the disk access time. Thus, as the access-time gap
widens, prefetching should continue to be beneficial.
Similar conclusions were reached for other patterns.

6 Conclusion

We present a practical predictor for general-purpose
local-pattern workloads (IOPORT), and a practi-
cal predictor for general-purpose global-pattern work-
loads (RGAPS). The two predictors were able to im-
prove on the non-prefetching time in many cases. In
the few cases where their prefetching was not benefi-
cial, the resulting performance loss was minor. They
were remarkably successful at reaching the potential
for prefetching, as determined with the EXACT pre-
dictor and originally reported in [9]. In addition, we
found that these predictors were robust across varia-
tions in architectural parameters, such as the number
of disks, number of processors, and disk access time.
These are important considerations, because we ex-
pect to see an increasing gap between processor speed
and disk access time, and we expect to see machines
with more processors and more disks.



Disk access time variation for gfp
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Figure 5: Disk-access time variation. (ev < 0.087)
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