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Disk�directed I�O for MIMD Multiprocessors

David Kotz

Dartmouth College� Hanover� NH ������ USA

Many scienti�c applications that run on today�s multiprocessors� such as weather forecasting and
seismic analysis� are bottlenecked by their �le�I�O needs� Even if the multiprocessor is con�gured
with su�cient I�O hardware� the �le�systemsoftware often fails to provide the available bandwidth
to the application� Although libraries and enhanced �le�system interfaces can make a signi�cant
improvement� we believe that fundamental changes are needed in the �le�server software� We
propose a new technique� disk�directed I�O� to allow the disk servers to determine the 	ow of data
for maximumperformance� Our simulations show that tremendous performance gains are possible
both for simple reads and writes and for an out�of�core application� Indeed� our disk�directed I�O
technique provided consistent high performance that was largely independent of data distribution�
and obtained up to 
�� of peak disk bandwidth� It was as much as 
� times faster than either a
typical parallel �le system� or a two�phase�I�O library�

Categories and Subject Descriptors� D���� �Operating systems�� File Systems Management�
access methods� �le organization� D���� �Operating systems�� Performance�simulation� E��
�Files�

General Terms� Design� Experimentation� Performance

Additional Key Words and Phrases� Parallel I�O� Parallel �le system� disk�directed I�O� MIMD�
collective I�O� �le caching

�� INTRODUCTION

Scienti�c applications like weather forecasting� aircraft simulation� molecular dy�
namics� remote sensing� seismic exploration� and climate modeling are increasingly
being implemented on massively parallel supercomputers �Kotz ����a	
 Each of
these applications has intense I�O demands� as well as massive computational re�
quirements
 Recent multiprocessors have provided high�performance I�O hard�
ware �Kotz ����b	� in the form of disks or disk arrays attached to I�O processors
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connected to the multiprocessor�s interconnection network� but e
ective �le�system
software has lagged behind

Today�s typical multiprocessor has a rudimentary parallel �le system derived from

Unix
 While Unix�like semantics are convenient for users porting applications to
the machine� the performance is often poor
 Poor performance is not surprising be�
cause the Unix �le system �McKusick et al
 ����	 was designed for a general�purpose
workload �Ousterhout et al
 ����	� rather than for a parallel� scienti�c workload

Scienti�c applications use larger �les and have more sequential access �Miller and
Katz ����� Galbreath et al
 ����� Pasquale and Polyzos ����� Pasquale and Polyzos
����	
 Parallel scienti�c programs access the �le with patterns not seen in unipro�
cessor or distributed�system workloads
 Although there seems to be a wide variety
of access patterns �Nieuwejaar et al
 ����� Crandall et al
 ����� Smirni et al
 ����	�
we have noticed many patterns accessing small� discontiguous pieces of the �le in
several types of strided pattern �Nieuwejaar and Kotz ����� Nieuwejaar et al
 ����	

Finally� scienti�c applications use �les for more than loading raw data and storing
results� �les are used as scratch space for large problems as application�controlled
virtual memory �Cormen and Kotz ����� Womble et al
 ����� Brunet et al
 �����
Klimkowski and van de Geijn ����	
 In short� multiprocessors need new �le systems
that are designed for parallel scienti�c applications

In this paper we describe a technique� disk�directed I�O� that is designed specif�

ically for high performance on parallel scienti�c applications
 It is most suited for
MIMD multiprocessors that have no remote�memory access� and that distinguish
between I�O Processors �IOPs�� which run the �le system� and Compute Proces�
sors �CPs�� which run the applications
 Figure � shows such an architecture
 The
IBM SP��� Intel iPSC� Intel Paragon� KSR��� Meiko CS��� nCUBE��� Thinking
Machines CM��� and Convex Exemplar all use this model
 The architectures of
the Paragon� the CS��� and the SP�� allow IOPs to double as CPs� although they
are rarely so con�gured
 Furthermore� our technique is best suited to applications
written in a single�program�multiple�data �SPMD� or data�parallel programming
model
 With our technique� described below� CPs collectively send a single request
to all IOPs� which then arrange the �ow of data to optimize disk performance

We begin by advocating that parallel �le systems support non�contiguous and

collective data requests
 Then� in Sections � and �� we consider some of the ways
to support collective I�O and our implementation of these alternatives
 Section �
describes our experiments� and Section � examines the results
 We look at some
possible interfaces in Section �� and consider some generalizations of disk�directed
I�O in Section �
 We contrast our system to related work in Section �� and mention
some existing implementations in Section ��
 We summarize our conclusions in
Section ��


	� COLLECTIVE I
O

Consider programs that distribute large matrices across the processor memories�
and the common task of loading such a matrix from a �le
 From the point of
view of a traditional �le system� that is� with a Unix�like interface� each processor
independently requests its portion of the data� by reading from the �le into its
local memory
 If that processor�s data is not logically contiguous in the �le� as
is often the case �Nieuwejaar et al
 ����	� a separate �le�system call is needed for
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Fig� 
� A typical MIMD multiprocessor� with separate compute processors �CPs� and I�O pro�
cessors �IOPs�� Disks attach only to IOPs� which run the �le system code� Applications run only
on the CPs�

each contiguous chunk of the �le
 The �le system is thus faced with concurrent
small requests from many processors� instead of the single large request that would
have occurred on a uniprocessor
 Indeed� since most multiprocessor �le systems
decluster �le data across many disks� each application request may be broken into
even smaller requests� which are sent to di
erent IOPs


The problem here is that valuable semantic information has been lost
 The
application programmer knows that the entire matrix is to be transferred between
the �le and the multiple CP memories� but is forced by the traditional Unix�like
interface to break that transfer into a series of small� contiguous requests from each
CP
 Two important pieces of semantic informationhave been lost in the translation�
that each request is actually part of a larger data transfer� and that all the CPs are
cooperating in a collective request

It is sometimes possible to rewrite the application to avoid making tiny� dis�

contiguous requests� particularly if you understand the application and the I�O
system well �Acharya et al
 ����	
 Unfortunately� such a rewrite is often di�cult�
forcing the application programmer to consider issues like bu
ering� asynchronous
I�O� prefetching� and so forth� that are better left to the �le system
 In this paper
we demonstrate a �le�system technique that can provide near�optimal I�O perfor�
mance to applications� by allowing applications to request transfers that �� involve
non�contiguous subsets of the �le� and �� involve all CPs in a collective operation

Fortunately� there are a few �le�system interfaces that allow non�contiguous

transfers
 Vesta �Corbett and Feitelson ����	 and the nCUBE �le system �DeBene�
dictis and del Rosario ����	 support logical mappings between the �le and processor
memories� de�ning separate �sub�les� for each processor
 The Galley �Nieuwejaar
and Kotz ����	 �le system�s nested�batched interface allows the programmer to
specify strided� nested�strided� or list�oriented data transfers
 The low�level inter�
face proposed by the Scalable�I�O �SIO� Initiative �Corbett et al
 ����b	 provides
a subset of Galley�s capability

There are also a few systems that support a collective�I�O interface� in which
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all CPs cooperate to make a single� large request
 Data�parallel languages� such
as CM�Fortran for the CM�� and C� �Moore et al
 ����	� have a collective I�O
interface by nature
 The emerging MPI�IO standard includes some collective I�O
support �Corbett et al
 ����a� MPIO ����	� as does the SIO interface �Corbett et al

����b	
 Finally� there are several libraries for collective matrix I�O �Galbreath et al

����� Karpovich et al
 ����� Bordawekar et al
 ����� Bennett et al
 ����� Chen et al

����� Toledo and Gustavson ����� Foster and Nieplocha ����	� and at least one for
more complex data structures �Gotwals et al
 ����	

These interfaces lay the groundwork for non�contiguous� collective I�O transfers


Although we return to the interface issue in Section �� this paper focuses on a
high�performance implementation technique to make the best of the information
provided through the interface


�� COLLECTIVE�I
O IMPLEMENTATION ALTERNATIVES

In this paper we consider collective�read and �write operations that transfer a large
matrix between CP memories and a �le
 The matrix is stored contiguously within
the �le� but the �le is declustered� block by block� over many IOPs and disks

The matrix is distributed among the CPs in various ways� but within each CP the
data is contiguous in memory
 We examine three implementation alternatives� a
simple parallel �le system� two�phase I�O� and disk�directed I�O
 Figure � sketches
the implementation of each
 We introduce each here� and discuss the details in
Section �


Simple parallel �le system� This alternative mimics a �traditional� parallel �le
system like Intel CFS �Pierce ����	� with IOPs that each manage a cache of data
from their local disks
 The interface has no support for collective I�O� or for non�
contiguous requests
 Thus� the application must make a separate request to the �le
system for each contiguous chunk of the �le� no matter how small
 Figure �a shows
the function called by the application on the CP to read its part of a �le� and the
corresponding function executed at the IOP to service each incoming CP request


Two�phase I�O� Figure �b sketches an alternative proposed by del Rosario� Bor�
dawekar� and Choudhary �del Rosario et al
 ����� Thakur et al
 ����	� which per�
mutes the data among the CP memories before writing or after reading
 Thus�
there are two phases� one for I�O and one for an in�memory permutation
 The
permutation is chosen so that each CP makes one� large� contiguous� �le�system
request
 The two�phase�I�O authors call this a �conforming� distribution� the �le
is logically broken into approximately equal�sized contiguous segments� one for each
CP


Disk�directed I�O� Here� the collective request is passed on to the IOPs� which
then arrange the data transfer as shown in Figure �c
 This disk�directed model puts
the disks �IOPs� in control of the order and timing of the �ow of data
 Disk�directed
I�O has several potential advantages over two�phase I�O�

�The I�O can conform not only to the logical layout of the �le� but to the physical
layout on disk �since two�phase I�O is only a library on top of a SPFS� it can�
not access physical layout information�
 Furthermore� if the disks are actually
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Fig� �� Pseudo�code for collective�read implementations� CP code is on the left� IOP code is on
the right� Collective writes are similar�
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redundant disk arrays �RAIDs�� the I�O can be organized to perform full�stripe
writes for maximum performance


�The disk I�O and the permutation overlap in time� rather than being separated
into two phases� so the smaller of the two �usually the permutation� takes e
ec�
tively no time


�There is no need to choose a conforming distribution
 The choice is di�cult� and
is dependent on the �le layout� access pattern� access size� and cache�management
algorithm


�The IOPs are aware that the CPs are involved in a collective request� and can
work to minimize the elapsed time of the entire request
 Secondary goals often
implemented in a SPFS IOP�s cache�management and disk�scheduling policies�
such as fairness to all CPs� may be abandoned
 �The optimal �but unfair� sched�
ule for some access patterns is to service one CP�s request in its entirety� before
the other CPs are serviced at all
�

�IOP prefetching and write�behind require no guessing� and thus make no mis�
takes


�Bu
er management is perfect� needing little space �two bu
ers per disk per �le��
and capturing all potential locality advantages


�No additional memory is needed at the CPs for permuting data


�Each datum moves through the interconnect only once in disk�directed I�O� and
typically twice in two�phase I�O


�Communication is spread throughout disk transfer� not concentrated in a per�
mutation phase


�There is no communication among the CPs� other than barriers


Disk�directed I�O has several additional advantages over the simple parallel �le
system�

�There is only one I�O request to each IOP� reducing overhead


�Disk scheduling is improved� by sorting the complete block list for each disk
�Figure �c�� rather than dynamically scheduling only the �current� requests


�There is no need for the �le�system code on the CPs to know the pattern of
data declustering across disks� allowing more complex declustering schemes to be
implemented


A note about the barriers in Figure �c� the cost of the barriers themselves is
negligible compared to the time needed for a large I�O transfer
 For some appli�
cations� the waiting time at the �rst barrier may be a concern if the preceding
computation is poorly balanced across CPs
 If so� the programmer may consider
using non�collective disk�directed I�O� in which each process makes its own individ�
ual disk�directed request to the IOPs
 The cost of unsynchronized requests may be
much larger than the saved synchronization overhead� however� particularly when
the I�O�access pattern exhibits �ne�grained interprocess spatial locality


�� EVALUATION

We implemented a simple parallel �le system� a two�phase�I�O system� and a disk�
directed�I�O system on a simulated MIMD multiprocessor �see below�
 In this
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Table 
� Parameters for simulator and our �le�system implementations� Those marked with a �
were varied in some experiments� Memput and Memget times are measurements from our code�

IOP bu�ers �DDIO� � per local disk
IOP bu�ers �SPFS� �PIO� � per local disk per CP
SPFS outstanding requests to IOP � per CP per disk
SPFS IOP cache replacement LRU
SPFS IOP cache prefetch one block ahead on same disk
SPFS IOP cache write�back WriteFull

MIMD� distributed�memory �� processors
Compute processors �CPs� 
� �

I�O processors �IOPs� 
� �

CPU speed� type �� MHz� ���bit RISC

Disks 
� �

Disk type HP 
����
Disk capacity 
�� GB
Disk transfer rate ��

 MB�s� for multi�track transfers
File�system block size � KB
I�O buses �one per IOP� 
� �

I�O bus type SCSI
I�O bus peak bandwidth 
� MB�s

Interconnect topology �� � rectilinear torus
Interconnect bandwidth ���� 
�� bytes�s� bidirectional
Interconnect latency �� ns per router
Routing wormhole

Memput CPU time �approx� � �sec � 
 �sec���� words of data�
Memget CPU time �approx� � �sec � � �sec���� words of data�

section� we describe our simulated implementation
 Many of the parameters are
shown in Table �
�

Files were striped across all disks� block by block
 Each IOP served one or more
disks� using one I�O bus
 Each IOP had a thread permanently running for each
local disk� that controlled access to the disk device
 The disk thread communicated
with threads representing CP requests through a disk�request queue


Message�passing and DMA� Since we assumed there was no remote�memory ac�
cess� we had to depend on message passing for data transfer
 We did assume�
however� that the network interface had a direct�memory access �DMA� capability

Our implementation used DMA to speed message passing in several ways
 Each
message was encoded so that the DMA interrupt handler on the receiving processor
could quickly decide where to deposit the contents of the message
 For requests
to the IOP� it copied the message into a free bu
er� and woke a sleeping thread
to process the bu
er
 Part of each request was the address of a reply action� a
structure on the CP which contained the address where a reply could be written�
and the identity of a thread to wake after the reply arrived
 The IOP included
this reply�action address in its reply to a request� for the CP�s interrupt handler to
interpret

In some situations we used �Memget� and �Memput� messages to read and write

the user�s bu
er on the CPs
 Every recipient CP provided a base address to its

�Throughout this paper� for both rates and capacities� KB means ��� bytes and MB means ���

bytes�




 � D� Kotz

message�passing system� so that the requester only referred to o
sets within each
CP�s bu
er
 Memput messages contained data� and returned only an acknowledge�
ment
 Memget messages contained a reply�action address� and returned a reply
containing the requested data
 It was possible to dynamically �batch� small Mem�
put and Memget requests� to combine many individual data transfers into larger
group transfers
�

Two�phase I�O� Our implementation followed the pseudo�code of Figure �b

We chose the same conforming distribution used by the two�phase I�O authors
�actually� a row�block distribution� because we store matrices in row�major or�
der� �Thakur et al
 ����	
 Thus� the application made only one� large� contiguous
�le�system request to each CP
 The data was permuted after reading� using Mem�
puts� or before writing� using Memgets
 When the matrix�element size was smaller
than the maximummessage size� we allowed the Memput and Memget requests to
be batched into group requests
 This decision nearly always led to better perfor�
mance� although it was up to �� slower in some cases �Kotz ����c	

As in a real two�phase�I�O implementation� the code is layered above a simple

parallel �le system� we used the simple parallel �le system described below
 Since
the �le is striped across all disks� block by block� the �le system turns each CP�s
single contiguous �le�system request into a series of block requests to every disk


Disk�directed I�O� Each IOP received one request� which was handled by a ded�
icated thread
 The thread computed the list of disk blocks involved� sorted the list
by physical disk address� and informed the relevant disk threads
 It then allocated
two one�block bu
ers for each local disk �double bu
ering�� and created a thread
to manage each bu
er
 While not necessary� the threads simpli�ed programming
the concurrent activities
 These bu
er threads repeatedly transferred blocks us�
ing Memput and Memget messages to move data to and from the CP memories�
letting the disk thread choose which block to transfer next
 When possible the
bu
er thread sent concurrent Memget or Memput messages to many CPs
 When
the matrix�element size was smaller than the maximum message size� we allowed
the Memput and Memget requests to be batched into group requests
 This decision
always led to better performance �Kotz ����c	


Simple parallel �le system� Our code followed the pseudo�code of Figure �a
 CPs
did not cache data� so all requests involved communication with the IOP
 The
CP sent concurrent requests to all the relevant IOPs� with up to four outstanding
requests per disk� per CP� when possible
 Most real systems are much less ag�
gressive
 Note that the CP �le�system code could only make multiple outstanding
requests to the same disk when presented with a large �multi�stripe� request from
the application

We limited our CPs to four outstanding requests per disk� per CP� as a form

of �ow control� to prevent CPs from overwhelming IOP resources
 Based on our
experiments� four outstanding requests led to the fastest �le system �Kotz ����c	

Each IOP managed a cache that was large enough to provide two bu
ers for every

�We used a fairly naive approach� with good results �Kotz 


�c�� There are more sophisticated
techniques �Dinda and O�Hallaron 


���
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outstanding block request from all CPs to all local disks� one for the request and
one for the corresponding prefetch or write�behind request� using a total of eight
bu
ers per CP per disk
 The cache used an LRU�replacement strategy� although
it wrote dirty bu
ers to disk when they were full �i
e
� after n bytes had been
written to an n�byte bu
er� though not necessarily in order �Kotz and Ellis ����	�

It prefetched one block ahead after each read request� this is more aggressive than
many traditional Unix �le systems� less aggressive than some parallel �le systems
�Intel CFS always reads groups of eight blocks� regardless of access pattern �Pierce
����	�� and very e
ective in the access patterns used in our experiments
 New
disk requests were placed into a per�disk priority queue� based on their disk�sector
address� using the Cyclical Scan algorithm �Seltzer et al
 ����	� and withdrawn
from the queue by the disk thread when it completed the previous request
 This
algorithm was nearly always faster than a First�Come First�Served algorithm� in
one case it was ��� slower �Kotz ����c	

We transferred data as a part of request and reply messages� rather than with

Memget or Memput
 We tried using Memgets to fetch the data directly from the
CP bu
er to the cache bu
er� but that was usually slower� and never substantially
faster �Kotz ����c	
 We nonetheless avoided most memory�memory copies by using
DMA to move data directly between the network and the user�s bu
er or between
the network and the IOP�s cache bu
ers� if possible
 At the IOP� incoming write
requests containing the data to write were assigned to an idle thread� with the
message deposited in the thread�s stack until the thread determined where in the
cache to put the data
 Later� the thread copied the data into a cache bu
er

While our cache implementation does not model any speci�c commercial cache

implementation� we believe it is a reasonable competitor for our disk�directed�I�O
implementation
 If anything� the competition is biased in favor of the simple parallel
�le system� leading to a conservative estimate of the relative bene�t of disk�directed
I�O� due to the following simpli�cations�

�The total cache provided� eight bu
ers per CP� per disk� per �le� grows quadrat�
ically with system size and is thus not scalable �disk�directed I�O only needs two
bu
ers per disk per �le�
 This size is quite generous� for example� there is �� MB
cache per IOP per �le� for IOPs with � local disks in a system with ��� CPs and
an � KB block size


�The static �ow control resulting from our limiting each CP to four outstanding
requests per disk �made possible by our large cache� saved the extra latency and
network tra�c of a dynamic �ow�control protocol


�We assumed that write requests from di
erent CPs would not overlap� avoiding
the need to ensure that writes were performed in the same relative order at all
IOPs
 Although valid for all of the access patterns in our experiments� a real
system would have extra overhead needed to guarantee proper ordering� or a �ag
like Vesta�s reckless mode �Corbett and Feitelson ����	


�We arranged for the application program to transfer the largest possible con�
tiguous pieces of the �le� within the constraints of the speci�ed access pattern�
rather than to access individual matrix elements
 For most access patterns this
arrangement led to much better performance
 Although this optimization seems
obvious� a surprising number of applications read contiguous data in tiny pieces�
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one by one� when a single large contiguous request might have served the same
purpose �Nieuwejaar et al
 ����	


��� Simulator

The implementations described above ran on top of the Proteus parallel�architecture
simulator �Brewer et al
 ����	� which in turn ran on a DEC����� workstation
 We
con�gured Proteus using the parameters listed in Table �
 These parameters are not
meant to re�ect any particular machine� but a generic machine of ���� technology


Proteus itself has been validated against real message�passing machines �Brewer
et al
 ����	
 Proteus has two methods for simulating the interconnection network�
an exact simulation that models every �it movement� and a modeled simulation
that uses stochastic techniques to estimate network contention and its e
ect on
latency
 Both methods assume that each processor has a deep hardware FIFO for
incoming messages
 To reduce the e
ect of this assumption� we added �ow control
to limit our use of this FIFO

We compared the e
ect of the network model on a subset of our experiments�

some with thousands of tiny messages� and some with many large messages� and
found that the results of each experiment using the stochastic model di
ered from
the same experiment using the exact network by at most �
��� and typically by
less than �
��
 Thus� our experiments used the stochastically modeled network


We added a disk model� a reimplementation of Ruemmler and Wilkes� HP �����
model �Ruemmler and Wilkes ����	
 We validated our model against disk traces
provided by HP� using the same technique and measure as Ruemmler and Wilkes

Our implementation had a demerit percentage of �
��� which indicates that it
modeled the ����� accurately �Kotz et al
 ����	


�� EXPERIMENTAL DESIGN

We used the simulator to evaluate the performance of disk�directed I�O� with the
throughput for transferring large �les as our performance metric
 The primary
factor used in our experiments was the �le system� which could be one of four al�
ternatives� the simple parallel �le system� two�phase I�O layered above the simple
parallel �le system� disk�directed� or disk�directed with block�list presort
 We re�
peated our experiments for a variety of system con�gurations� each con�guration
was de�ned by a combination of the �le�access pattern� disk layout� number of CPs�
number of IOPs� and number of disks
 Each test case was replicated in �ve inde�
pendent trials� to account for randomness in the disk layouts� disk initial rotational
positions� and in the network
 The total transfer time included waiting for all I�O
to complete� including outstanding write�behind and prefetch requests


The �le and disk layout� Our experiments transferred a one� or two�dimensional
array of records
 Two�dimensional arrays were stored in the �le in row�major
order
 The �le was striped across disks� block by block
 The �le size in all cases
was �� MB ����� ��KB blocks�
 While �� MB is not a large �le� preliminary tests
showed qualitatively similar results with ��� and ���� MB �les �see page ���
 Thus�
�� MB was a compromise to save simulation time


Within each disk� the blocks of the �le were laid out according to one of two
strategies� contiguous� where the logical blocks of the �le were laid out in consecu�
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tive physical blocks on disk� or random�blocks� where blocks were placed at random
physical locations
 We used the same set of �ve layouts �one for each trial� for all
random�blocks experiments
 A real �le system would be somewhere between the
two
 As a validation� however� we experimented with a compromise random�tracks
layout
 In this layout� we chose a random set of physical tracks� and placed blocks
consecutively within each track
 We found our results to be qualitatively similar�
and quantitatively between the contiguous and random�blocks layouts� so we only
treat the two extremes here


The access patterns� Our read� and write�access patterns di
ered in the way the
array elements �records� were mapped into CP memories
 We chose to evaluate
the array�distribution possibilities available in High�Performance Fortran �HPFF
����	� as shown in Figure �
 Thus� elements in each dimension of the array could
be mapped entirely to one CP �NONE�� distributed among CPs in contiguous
blocks �BLOCK� note this is a di
erent �block� than the �le system �block��� or
distributed round�robin among the CPs �CYCLIC�
 We name the patterns using
a shorthand beginning with r for reading an existing �le or w for writing a new
�le� the r names are shown in Figure �
 There was one additional pattern� ra

�ALL� not shown�� which corresponds to all CPs reading the entire �le� leading to
multiple copies of the �le in memory
 Note that rb and wb are the �conforming
distributions� used by two�phase I�O
 Table � shows the exact shapes used in our
experiments
 A few patterns are redundant in our con�guration �rnn � rn� rnc �
rc� rbn � rb� and were not actually used

We chose two di
erent record sizes� one designed to stress the system�s capa�

bility to process small pieces of data� with lots of interprocess locality and lots of
contention� and the other designed to work in the most�convenient unit� with little
interprocess locality or contention
 The small record size was � bytes� the size of
a double�precision �oating point number
 The large record size was ���� bytes�
the size of a �le�system block and cache bu
er
 These record�size choices are rea�
sonable �Nieuwejaar et al
 ����	
 We also tried �����byte and �����byte records
�Figure ���� leading to results between the ��byte and �����byte results� we present
only the extremes here

In the simple�system case� recall that the application makes �le�system requests

for whole chunks� which may be much larger than individual records �Table ��
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Fig� �� Examples of matrix distributions� which we used as �le�accesspatterns in our experiments�
These examples represent common ways to distribute a 
x� vector or an �x� matrix over four
processors� Patterns are named by the distribution method �NONE� BLOCK� or CYCLIC� in
each dimension �rows �rst� in the case of matrices�� Each region of the matrix is labeled with
the number of the CP responsible for that region� The matrix is stored in row�major order� both
in the �le and in memory� The chunk size �cs� is the size of the largest contiguous chunk of the
�le that is sent to a single CP �in units of array elements�� and the stride �s� is the �le distance
between the beginning of one chunk and the next chunk destined for the same CP� where relevant�
The actual shapes used in our experiments are listed in Table ��
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Table �� Summary of �le�access patterns �smaller examples of these patterns are shown in Fig�
ure ��� We list only the read patterns here� All numbers are for a 
� MB �le distributed over

� CPs� Two�dimensional matrices are stored in the �le in row�major order� A dash ��� indicates
�not applicable� Chunks and strides are given in records� not bytes �for ��byte records� notice
that 
 K records are one block�� The rcc pattern has two di�erent strides�

Record Chunk
Pattern Row Column size size Stride
name distribution distribution �bytes� Rows Cols �records� �records�

ra ALL � � � � 
��� blocks �
rn NONE � � � � 
��� blocks �

rb BLOCK � � 
�
���� � �� K �
rc CYCLIC � � 
�
���� � 
 
�
rnn NONE NONE � 
��� 
��� 
��� K �
rnb NONE BLOCK � 
��� 
��� �� 
 K
rnc NONE CYCLIC � 
��� 
��� 
 
�
rbn BLOCK NONE � 
��� 
��� �� K �
rbb BLOCK BLOCK � 
��� 
��� ��� 
 K
rbc BLOCK CYCLIC � 
��� 
��� 
 �
rcn CYCLIC NONE � 
��� 
��� 
 K 
� K
rcb CYCLIC BLOCK � 
��� 
��� ��� � K
rcc CYCLIC CYCLIC � 
��� 
��� 
 �� �K��

rb BLOCK � �

� 
��� � �� �
rc CYCLIC � �

� 
��� � 
 
�
rnn NONE NONE �

� �� �� 
��� �
rnb NONE BLOCK �

� �� �� � ��
rnc NONE CYCLIC �

� �� �� 
 
�
rbn BLOCK NONE �

� �� �� �� �
rbb BLOCK BLOCK �

� �� �� � ��
rbc BLOCK CYCLIC �

� �� �� 
 �
rcn CYCLIC NONE �

� �� �� �� �
�
rcb CYCLIC BLOCK �

� �� �� � 
��
rcc CYCLIC CYCLIC �

� �� �� 
 �� 
��
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� RESULTS

Figures ��� show the performance of the three techniques
 All experiments used ��
CPs� �� disks� and �� IOPs
 Because the ra pattern broadcasts the same �� MB
data to all �� CPs� its apparent throughput was in�ated
 We have normalized ra

throughput in all of our graphs by dividing by the number of CPs


Figures � and � display the performance on a random�blocks disk layout� Figure �
for patterns with ��byte records� and Figure � for patterns with �����byte records

On each graph� four cases are shown for each access pattern� simple parallel �le
system �SPFS�� two�phase I�O ��PIO�� and disk�directed I�O �DDIO� with and
without a presort of the block requests by physical location
 Note that the disks�
peak multi�track transfer rate was ��
� MB�s� but with a random�blocks disk layout
it was impossible to come close to that throughput
 Throughput for disk�directed
I�O with presorting consistently reached �
� MB�s for reading and �
� MB�s for
writing
 In contrast� SPFS throughput was highly dependent on the access pattern�
was never faster than � MB�s� and was particularly slow for many ��byte patterns

Cases with small chunk sizes were the slowest� as slow as �
� MB�s� due to the
tremendous number of requests required to transfer the data
 As a result� disk�
directed I�O with presorting was up to �
� times faster than the simple parallel �le
system


Figures � and � also make clear the bene�t of presorting disk requests by physical
location� an optimization available in disk�directed I�O to an extent not possible
in the simple parallel �le system or in two�phase I�O
 Even so� disk�directed I�O
without presorting was faster than the simple parallel �le system in most cases
 At
best� it was �
� times faster� at worst� there was no noticeable di
erence
 Disk�
directed I�O thus improved performance in two ways� by reducing overhead and
by presorting the block list


Figures � and � demonstrate the mixed results of two�phase I�O
 It was slightly
slower than the simple parallel �le system for most patterns with ��KB records�
because it did not overlap the permutation with the I�O
 Of the statistically
signi�cant di
erences� most were only � ��� although in the ra pattern two�phase
I�O was ��� slower
 Two�phase I�O did substantially improve performance �by
as much as �
� times� on small�chunk�size patterns
 Two�phase I�O matched the
performance of disk�directed I�O without presorting in most patterns� although
disk�directed I�O was still about ��� faster in ra and some ��byte cyclic patterns�
because it could overlap the costly permutation with the disk I�O
 With disk�
directed I�O�s additional advantage of presorting the block list� it was �� ���
faster than two�phase I�O


To test the ability of the di
erent �le�system implementations to take advantage
of disk layout� and to expose other overheads when the disk bandwidth could be
fully utilized� we compared the two methods on a contiguous disk layout �Figures �
and ��
 I�O on this layout was much faster than on the random�blocks layout�
by avoiding the disk�head movements caused by random layouts and by bene�ting
from the disks� own read�ahead and write�behind caches
 In most cases disk�directed
I�O moved about ��
� MB�s� which was a respectable ��� of the disks� peak multi�
track transfer rate of ��
� MB�s
 The few cases where disk�directed I�O did not
get as close to the peak disk transfer rate were a
ected by the overhead of moving
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Throughput (MB/s) of random-blocks layout  
on patterns with 8-byte records
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Fig� �� Comparing the throughput of disk�directed I�O �DDIO� to that of two�phase I�O ��PIO�
and the simple parallel �le system �SPFS�� on a random�blocks disk layout using patterns with
an ��byte record size� ra throughput has been normalized by the number of CPs� Each point
represents the average of �ve trials of an access pattern �the maximum coe�cient of variation �cv�
is ������ except for ���� on wc on SPFS��
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Throughput (MB/s) of random-blocks layout  
on patterns with 8192-byte records
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Fig� �� Comparing the throughput of disk�directed I�O �DDIO� to that of two�phase I�O ��PIO�
and the simple parallel �le system �SPFS�� on a random�blocks disk layout using patterns with
an ���	�byte record size� ra throughput has been normalized by the number of CPs� Each point
represents the average of �ve trials of an access pattern �the maximum cv� is ����
��
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individual ��byte records to and from the CPs
 �In our earlier results �Kotz ����	�
the performance was worse� the �batched� Memput and Memget operations used
here improved performance by ������ on these patterns �Kotz ����c	
�
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Throughput (MB/s) of contiguous layout  
on patterns with 8-byte records 
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Fig� �� Comparing the throughput of disk�directed I�O �DDIO�� two�phase I�O ��PIO�� and
the simple parallel �le system �SPFS�� on a contiguous disk layout� using access patterns with
��byte records� Note that �DDIO and �DDIO sort are identical here� because the logical block
numbers are identical to the physical block numbers� so the sort is a no�op� ra throughput has
been normalized by the number of CPs� Each point represents the average of �ve trials of an
access pattern �the maximum cv is ������ except for ���� on ��byte wc on SPFS�� Note that the
peak disk throughput was ���� MB�s�
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Throughput (MB/s) of contiguous layout  
on patterns with 8192-byte records
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Fig� �� Comparing the throughput of disk�directed I�O �DDIO�� two�phase I�O ��PIO�� and
the simple parallel �le system �SPFS�� on a contiguous disk layout� using access patterns with
���	�byte records� Note that �DDIO and �DDIO sort are identical here� because the logical
block numbers are identical to the physical block numbers� so the sort is a no�op� ra throughput
has been normalized by the number of CPs� Each point represents the average of �ve trials of an
access pattern �the maximum cv is ������� Note that the peak disk throughput was ���� MB�s�
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Discussion� The simple parallel �le system was often unable to obtain the full
disk bandwidth� and had particular trouble with the ��byte patterns
 Although
there were cases where the simple parallel �le system could match disk�directed
I�O� disk�directed I�O was as much as ��
� times faster than the simple parallel
�le system
 The simple parallel �le system had several di�culties�

�When the CPs were using patterns with ��byte chunks �rc� rbc� rcc� wc� wbc�
and wcc�� many IOP�request messages were necessary to transfer the small non�
contiguous records� requiring many expensive IOP�cache accesses
 It could have
been worse� the cache successfully caught the interprocess spatial locality of
these patterns� if the CPs had been poorly synchronized the cache would have
thrashed


�When the CPs were active at widely di
erent locations in the �le �e
g
� in rb�
rbb� rbc� or rcc� with � KB records�� there was little interprocess spatial locality

In the contiguous layout� these multiple localities defeated the disk�s internal
caching and caused extra head movement� both a signi�cant performance loss

Fortunately� disk scheduling and the ability to request up to four blocks per CP
per disk allowed the rb pattern �which transfers data in large chunks� to avoid
most of this problem �Kotz ����c	
 In doing so� it used a schedule that allowed
some CPs to progress much more quickly than others� this is an example of an
instance where load imbalance and service that is unfair to some CPs can lead
to much better collective performance


�Patterns reading medium�sized chunks �rbb� rbc� rcc with � KB records� were
slow because the application made only one request at a time �to each CP�� and
the small chunk size prevented the CPs from issuing many requests to the IOPs

The IOPs� disk queues thus had few requests� and thus the disk was forced to
seek from one region to another
 The same patterns� when mapped onto a larger
�le ����� MB�� had large chunks� and thus were able to �ll the disk queues and
realize the full bandwidth �not shown�

The corresponding write patterns �wbb� wbc� wcc�� however� were more successful

The IOP caches were large enough �� MB� to hold much of the �le ��� MB�
 The
numerous small CP writes completed quickly� �lling the cache and thus �lling
the disk queues� leading to a disk schedule nearly as e�cient as that used in
disk�directed I�O
 This e
ect would be negligible in a huge �le


�The high data rates of the contiguous disk layout expose the cache�management
overhead in the simple parallel �le system� particularly in the access patterns
with small chunks


Two�phase I�O usually helped avoid the worst troubles of the simple parallel �le
system� particularly for small records
 It had several problems of its own� however�

�Despite making larger requests to the �le system� the �ow�control limitations
prevented it from making enough requests to the IOPs to �ll the disk queues as
well as disk�directed I�O� so it was less able to optimize the disk accesses in the
random�blocks layout


�The additional permutation step prevented it from matching disk�directed I�O
performance in most patterns� even with �����byte records and a contiguous lay�
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out
 Indeed� the cost of the permutation occasionally resulted in lower through�
put than the simple parallel �le system� even for ��byte records


Disk�directed I�O was not perfect� of course
 Note that disk�directed I�O chose
the same �optimal� disk schedule for all access patterns
 Thus� any di
erence in
performance between two access patterns was due to the time spent delivering the
data to CPs when reading� or gathering the data from CPs when writing
 IOP
double�bu
ering allowed this communication to overlap the I�O
 The I�O time was
su�ciently high in the random�blocks layout to cover the communication overhead
of all access patterns
 The I�O time was low in the contiguous layout� but still large
enough to cover the communication time in most access patterns
 The patterns
with ��byte chunks �rc� rbc� rcc� wc� wbc� and wcc�� however� required a lot of
communication and computation from the IOP� which became the limiting factor
in the performance

Indeed� in one case ���byte rbc in the contiguous layout�� disk�directed I�O

was �� slower than two�phase I�O
 In this situation� where communication was
the limiting factor� the optimal I�O pattern was not the optimal communication
pattern
 The optimal I�O pattern read the �le from beginning to end� which meant
that the rows of the matrix were read in increasing order
 In our rbc distribution
�see Figure � and Table �� this ordering meant that the IOPs were communicating
with only four CPs at a time� leading to network congestion
 In the two�phase�I�O
permutation phase� however� all sixteen CPs were communicating simultaneously�
with less congestion
 The solution would be to have each IOP rotate its I�O list by
a di
erent amount� so as to start its I�O pattern at a di
erent point� costing one
disk seek but staggering the communications and reducing congestion


Summary� The above results give a rough picture of the kind of performance
improvements possible in a workload that reads and writes matrices in �les
 To
summarize� consider the ratio of the throughput o
ered by disk�directed I�O� or
two�phase I�O� to that o
ered by the simple parallel �le system on particular access
pattern
 A ratio greater than one indicates that the method was faster than the
simple parallel �le system on that access pattern
 We summarize that �improvement
factor� across all access patterns� looking at the minimum� geometric mean �Jain
����� page ���	� and maximum�

Method minimum geometric mean maximum
DDIO sort �
�� �
�� ��
��
DDIO no sort �
�� �
�� �
��
�PIO �
�� �
�� ��
��

We include �DDIO no sort� only for comparison� as one would always want to use
the sorting feature� these numbers apply only to the random disk layout
 We can
see that although DDIO �with sorting� sometimes makes no di
erence �ratio �
����
it is on average ��� faster� and was up to �� times faster
 Although two�phase I�O
was also about �� times faster on one case ���byte wbc�� it was otherwise no more
than �
�� times faster� sometimes much slower than the simple parallel �le system�
and only ��� faster on average
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Fig� �� A comparison of the throughput of disk�directed I�O �DDIO� and the simple parallel �le
system �SPFS�� as the number of CPs varied� for the ra� rn� rb� and rc patterns �ra throughput
has been normalized by the number of CPs�� All cases used the contiguous disk layout� and all
used � KB records� See Figure 
 for �PIO results�


�� Sensitivity

To evaluate the sensitivity of our results to some of the parameters� we indepen�
dently varied the number of CPs� number of IOPs� number of disks� �le size� and
record size
 It was only feasible to experiment with a subset of all con�gurations� so
we chose a subset that would push the limits of the system by using the contiguous
layout� and exhibit most of the variety shown earlier� by using the patterns ra�
rn� rb� and rc with � KB records
 ra throughput was normalized as usual �see
the beginning of Section ��
 Since the conclusions from two�phase I�O were nearly
always the same as those from the simple parallel �le system� we plot two�phase
I�O only where the conclusions di
er from the simple parallel �le system

We �rst varied the number of CPs �Figure ��� holding the number of IOPs and

disks �xed� and maintaining the cache size for the simple parallel �le system at eight
bu
ers per disk per CP 
 It may seem unusual to consider a con�guration with fewer
CPs than IOPs
 Most multiprocessors are shared� however� so it is not unlikely for
an application to occasionally run on a small subset of CPs� while accessing �les
that are declustered across the larger� complete set of IOPs

Most cases were una
ected� the most interesting e
ect was the poor performance

of the simple parallel �le system on the rc pattern
 Recall that in the simple parallel
�le system all the parallelism is generated by the CPs� either from splitting large
requests into concurrent smaller requests� or from several CPs making concurrent
requests
 With ��block records and no bu
ers at the CP� each �le�system call could
only use one disk� and then with only one outstanding request
 With fewer CPs
than IOPs� the full disk parallelism was not used

Unlike in our other variations� below� two�phase I�O behaved quite di
erently

from the simple parallel �le system
 Results from the contiguous layout are shown
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has been normalized by the number of CPs�� All cases used the contiguous disk layout� and all
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in Figure �
 Similar results were found with the random�blocks layout �not shown�

As with the simple parallel �le system� the rb throughput was una
ected by the
number of CPs
 Since rb was the I�O access pattern always used by two�phase
I�O� the reduced throughput seen for ra� rn� and rc was due entirely to slowness
in the permutation
 With one CP� the permutation was local to one CP� and was
thus fairly fast �it would have matched rb if the code were changed to test for this
special case� avoiding the permutation�
 Otherwise� the permutation throughput
steadily improved for rn and rc� as more CPs provided more CPUs� memories� and
network interfaces for moving the data
 The normalized permutation throughput
decreases for ra� due to increasing contention in this all�to�all permutation �recall
that for ra the amount of data moved increases with the number of CPs�


We then varied the number of IOPs �and SCSI busses�� holding the number of
CPs� number of disks� and total cache size �xed �Figure ���
 Performance decreased
with fewer IOPs because of increasing bus contention� particularly when there were
more than two disks per bus� and was ultimately limited by the �� MB�s bus
bandwidth
 Indeed� with � IOPs the simple parallel �le system was ��� faster
than disk�directed I�O in the rn and rc patterns� due to a subtle implementation
issue
�

�Disk�directed I�O used three bus transactions when reading� rather than two� �rst� the host
asked the disk to prefetch the desired block into its cache� second� the host asked the disk to
transfer the data to the host� third� the disk transferred the data to the host� The �rst request
is unusual� but our implementation sometimes knew the identity of the next block before it knew
the location of the bu�er that would hold the data� This scheme normally improved performance�
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We then varied the number of disks� using one IOP� holding the number of CPs
at ��� and maintaining the simple�system cache size at eight bu
ers per CP per
disk �Figures �� and ���
 Performance scaled with more disks� approaching the ��
MB�s bus�speed limit
 The simple parallel �le system had particular di�culty with
the rb and ra patterns
 The large chunk sizes in these patterns sent a tremendous
number of requests to the single IOP� and it appears that throughput was degraded
by the overhead on the IOP CPU


but when the bus was congested� the extra delay slowed down the �le system�
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� but here all cases used the random�blocks disk layout� DDIO used
the block�presort�
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In most of this paper we simulate �� MB �les
 To examine the e
ect of this
choice� Figures �� and �� compare throughputs for �les �� and ��� times larger

Though the maximum throughputs were reached with �les ��� MB or larger� we
chose �� MB for simulation e�ciency
 The relative order of test cases remained
the same
 The maximum throughput attained was ��
� MB�s� which is ��� of the
peak disk�transfer bandwidth
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Fig� 
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In this paper we focus on �� and �����byte record sizes
 Figure �� shows the e
ect
of other record sizes in situations where the record size was expected to make the
most di
erence� in the simple parallel �le system on rc� using both contiguous and
random�blocks layouts
 This plot justi�es our focus on the extremes� ��byte records
limited throughput through excessive overhead� while �����byte records reduced
overhead and exposed other limits �here� the disk bandwidth in the random�blocks
layout�


Summary� These variation experiments showed that while the relative bene�t
of disk�directed I�O over two�phase I�O or the simple parallel �le system varied�
disk�directed I�O consistently provided excellent performance� almost always better
than the simple parallel �le system� often independent of access pattern� and often
close to hardware limits
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�� INTERFACES FOR DISK�DIRECTED I
O

There are two interfaces that are important to consider when implementing a disk�
directed I�O system� the application programmer�s interface �API�� and the internal
CP IOP interface
 Although we do not propose any speci�c interfaces in this paper�
it should be possible to use any of several existing interfaces in the construction of
a disk�directed I�O system


��� Application�programmer�s interface �API�

The interesting characteristic of an API is its capability to specify which parts of the
�le are desired� and how the data is distributed among the CPs� bu
ers
 Perhaps
the most common behavior is to collectively transfer a data set that is contiguous
within the �le� but distributed among processor memories in some interesting way

There are at least three fundamental styles of API for parallel I�O� each of which
provides a di
erent kind of solution to this problem

The �rst style allows the programmer to directly read and write data structures

such as matrices� Fortran provides this style of interface� as do many libraries �Gal�
breath et al
 ����� Karpovich et al
 ����� Bennett et al
 ����� Seamons et al
 �����
Thakur et al
 ����	
 Some object�oriented interfaces go even further in this direc�
tion �Krieger and Stumm ����� Karpovich et al
 ����� Seamons et al
 ����	
 As long
as your data structure can be described by a matrix� and the language or library
also provides ways to describe distributed matrices� this interface provides a neat
solution

The second style provides each processor its own �view� of the �le� in which

non�contiguous portions of the �le appear to be contiguous to that processor
 By
carefully arranging the processor views� the processors can use a traditional I�O�
transfer call that transfers a contiguous portion of the �le �in their view� to or from
a contiguous bu
er in their memory� and yet still accomplish a non�trivial data
distribution
 The most notable examples of this style include a proposed nCUBE
�le system �DeBenedictis and del Rosario ����	� Vesta �Corbett and Feitelson ����	�
and MPI�IO �Corbett et al
 ����a� MPIO ����	

The third style has neither an understanding of high�level data structures� like

the �rst� nor per�process views of the �le� like the second
 Each call speci�es
the bytes of the �le that should be transferred
 This interface is common when
using the C programming language in most MIMD systems� although many have
special �le�pointer modes that help in a few simple situations �Intel CFS �Pierce
����	 and TMC CMMD �Best et al
 ����	� for example�
 None of these allow the
processor to make a single �le�system request for a complex distribution pattern

More sophisticated interfaces� such as the nested�batched interface �Nieuwejaar and
Kotz ����	� can specify a list� or a strided series� of transfers in a single request

This latter interface is perhaps the most powerful �e�cient and expressive� of this
style of interface

Any of the above interfaces that support collective requests and can express

non�trivial distributions of data among the processor memories� would be su��
cient to support disk�directed I�O
 These include �at least� HPF and other SPMD
languages� the nested�batched interface �Nieuwejaar and Kotz ����	 with collec�
tive extensions� Vesta �Corbett and Feitelson ����	� MPI�IO �Corbett et al
 ����a�
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MPIO ����	� and most of the matrix libraries �Galbreath et al
 ����� Karpovich
et al
 ����� Bennett et al
 ����� Seamons et al
 ����� Thakur et al
 ����	


��	 CP�IOP interface

Once the application programmer has expressed the desired data transfer� how do
the compute processors communicate that information to all of the IOPs� and how
do the IOPs use the information to arrange the data transfer!
In the experiments of Section �� all of the possible data�distribution patterns �e
g
�

block�cyclic� were understood by the IOPs� so the CPs needed only to request a
particular distribution pattern and to provide a few parameters
 A more realistic
system should be more �exible� it should support the commonmatrix distributions
easily� and it should support arbitrary distributions and irregular data structures

Fortunately� several compiler groups have developed compact parameterized for�

mats for describing matrix distributions �Brezany et al
 ����� Thakur et al
 ����	

This compact description of the distribution pattern� generated by a compiler or
a matrix�support library� can be passed to the IOPs
 A few calculations can tell
the IOP which �le blocks it should be transferring� and for each �le block� the
in�memory location of the data �CP number and o
set within that CP�s bu
er�


To support complex or irregular distributions� each CP can send a single nested�
batched request �Nieuwejaar and Kotz ����	 to each IOP
 Such requests can capture
complex but regular requests in a compact form� but can also capture completely
irregular requests as a list
 These compact requests can be easily converted into a
list of blocks� for I�O� and later used for mapping each block into the in�memory
location �CP number� CP o
set� of the data �Kotz ����b	

The combination of the compact parameterized descriptions for common matrix

distributions� and the fully general nested�batched interface �Nieuwejaar and Kotz
����	� are su�cient to support disk�directed I�O e�ciently


�� EXPANDING THE POTENTIAL OF DISK�DIRECTED I
O

The idea of disk�directed I�O can be expanded to include several other interesting
possibilities �Kotz ����a	
 Assuming some mechanism exists to run application�
speci�c code on the IOPs� the IOPs could do more with the data than simply
transfer it between CP memories and disk


Data�dependent distributions� In some applications� the data set must be divided
among the CPs according to the value of the records� rather than their position in
the �le
 Using a simple parallel �le system� it is necessary to use a two�phase I�O
approach
 The CPs collectively read all of the data into memory
 As each record
arrives at a CP� the CP examines the record� determines the actual destination of
that record� and sends the record to the appropriate destination CP
 By moving this
distribution function to the IOPs� the data could be sent directly to the destination
CP� halving the total network tra�c �for experimental results� see �Kotz ����a	�

Unless the additional work overloads the IOPs� reduced network tra�c would lead
to better throughput in systems with slow or congested networks


Data�dependent �ltering� Some applications wish to read a subset of the records
in a �le� where the subset is de�ned by the value of the data in the records� rather
than their position in the �le
 Using a simple parallel �le system� the CPs must
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read all of the data� and then discard the undesired records
 By moving this
record��ltering function to the IOPs� undesired records would never be sent to CPs�
reducing network tra�c �for experimental results� see �Kotz ����a	�
 In systems
with slow or congested networks� that lower tra�c would lead to better throughput

A similar technique has already been demonstrated in some database systems �Borr
and Putzolu ����	


�� RELATED WORK

Disk�directed I�O is somewhat reminiscent of the PIFS �Bridge� �tools� inter�
face �Dibble ����	� in that the data �ow is controlled by the �le system rather
than by the application
 PIFS focuses on managing where data �ows �for memory
locality�� whereas disk�directed I�O focuses more on when data �ows �for better
disk and cache performance�

Some parallel database machines use an architecture similar to disk�directed I�O�

in that certain operations are moved closer to the disks to allow for more optimiza�
tion
 By moving some SQL processing to the IOPs� one system was able to �lter
out irrelevant tuples at the IOPs� reducing the data volume sent to the CPs �Borr
and Putzolu ����	

Some matrix�I�O libraries signi�cantly improve performance by changing the un�

derlying matrix storage format �Karpovich et al
 ����� Sarawagi and Stonebraker
����� Seamons and Winslett ����� Toledo and Gustavson ����	
 These libraries
could use a disk�directed �le system to obtain even better performance� transpar�
ently to the end user

The Jovian collective�I�O library �Bennett et al
 ����	 tries to coalesce fragmented

requests from many CPs into larger requests that can be passed to the IOPs
 Their
�coalescing processes� are essentially a dynamic implementation of the two�phase�
I�O permutation phase

Transparent Informed Prefetching �TIP� enables applications to submit detailed

hints about their future �le activity to the �le system� which can then use the hints
for accurate� aggressive prefetching �Patterson et al
 ����	
 Aggressive prefetching
serves to provide concurrency to disk arrays� and deeper disk queues to obtain
better disk schedules
 In this sense TIP and disk�directed I�O are similar
 TIP�
however� has no explicit support for parallel applications� let alone collective I�O�
and thus would need to be extended
 Furthermore� once an application provides
hints to TIP it uses the traditional Unix�like �le�system interface� retaining the
overhead of processing many tiny requests
 The application requests I�O in the
same sequence� limiting the potential for reordering within the disk queues due to
limited bu
er space
 Finally� TIP o
ers no bene�ts for writing� only for reading

Our model for managing a disk�directed request� that is� sending a high�level

request to all IOPs which then operate independently under the assumption that
they can determine the necessary actions to accomplish the task� is an example
of collaborative execution like that used in the TickerTAIP RAID controller �Cao
et al
 ����	

Finally� our Memput and Memget operations are not unusual
 Similar remote�

memory�access mechanisms are supported in a variety of distributed�memory sys�
tems �Wheat et al
 ����� Culler et al
 ����� Hayashi et al
 ����	
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��� IMPLEMENTATIONS OF DISK�DIRECTED I
O

The original appearance of this research �Kotz ����	 inspired several other research
projects

ENWRICH �Purakayastha et al
 ����	 uses our simulator to investigate the vi�

ability of CP caching in write�only access patterns
 In ENWRICH� CPs using a
traditional Unix�like application interface accumulate small writes in local bu
ers�
then use disk�directed I�O to collectively �ush the bu
ers when they become full

The Panda library for collective matrix I�O uses a variant of disk�directed I�O

they call server�directed I�O �Seamons et al
 ����� Chen et al
 ����	
 Panda is
implemented on top of a traditional Unix �le system� so they cannot obtain infor�
mation about the physical disk layout to use in their preliminary sort
 Otherwise�
Panda�s technique is like ours
 Results from their implementation on an IBM SP��
validate the bene�ts of disk�directed I�O over a non�collective� client�directed ap�
proach

The Galley parallel �le system �Nieuwejaar and Kotz ����	 provides a compro�

mise interface� it has no collective requests� but it has structured requests that
allow strided chunks of the �le to be transferred in a single request
 The imple�
mentation essentially uses a non�collective version of disk�directed I�O� a single
complex request is sent from each CP to the IOP in the form of a list of contiguous
chunks to be transferred from that IOP�s disk to that CP
 The IOP converts the
list of chunks into a list of blocks
 First� it checks the cache to transfer any data
that needs no disk I�O
 Then it passes a list of block�transfer requests to the disk
thread� which sorts them into a disk schedule based on the disk layout
 As the disk
works through the schedule� it sends data to �or fetches data from� the CP
 Notice
that if many CPs are simultaneously requesting complementary chunks from the
�le� as one would expect in a collective operation� their requests will dynamically
meet each other in the cache and the disk queue
 �Note that it is important for the
CPs to be approximately synchronized in their �le�access patterns� to avoid cache
thrashing
� The performance is often similar to that of a pure disk�directed I�O
implementation �Nieuwejaar and Kotz ����	


��� CONCLUSIONS

Our simulations show that disk�directed I�O avoided many of the pitfalls inherent
in the simple parallel �le system �SPFS�� such as cache thrashing� extraneous disk�
head movements� extraneous prefetches� excessive request�response tra�c between
CP and IOP� inability to use all the disk parallelism� inability to use the disks� own
caches� overhead for cache management� and memory�memory copies
 Furthermore�
disk�directed I�O was able to schedule disk requests across the entire access pattern�
rather than across a smaller set of �current� requests
 As a result� disk�directed
I�O could provide consistent performance close to the limits of the disk hardware

Indeed� it was in one case more than �� times faster than the SPFS� despite the
fact that our SPFS implementation included simplifying assumptions that should
overestimate its performance
 Finally� the performance of disk�directed I�O was
nearly independent of the distribution of data to CPs

Our results also show that while two�phase I�O could substantially improve per�

formance over the simple parallel �le system� it could also reduce performance
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Furthermore� it was often unable to match the performance of disk�directed I�O�
largely because it did not overlap the I�O with the permutation


As presented here� disk�directed I�O would be most valuable when making large�
collective transfers of data between multiple disks and multiple memories� whether
for loading input data� storing result data� or swapping data to a scratch �le in an
out�of�core algorithm
 Indeed� the data need not be contiguous �Kotz ����a	� and
the Galley results show that the interface need not be collective �Nieuwejaar and
Kotz ����	
 The concept of disk�directed I�O can also be extended to other envi�
ronments
 Our Memput and Memget operations would be easily implemented on
a shared�memory machine with a block�transfer operation� for example
 Although
our patterns focused on the transfer of ��d and ��d matrices� we expect to see
similar performance for higher�dimensional matrices and other regular structures

Finally� there is potential to implement transfer requests that are more complex
than simple permutations� for example� selecting only a subset of records whose
data values match some criterion� or distributing records to CPs based on their
value� rather than �le position

Our results emphasize that simply layering a new interface on top of a simple

parallel �le system will not su�ce
 For maximum performance the �le�system in�
terface must allow CPs to make large� non�contiguous requests� and should support
collective�I�O operations
 The �le�system software �in particular� the IOP software�
must be redesigned to use mechanisms like disk�directed I�O
 Nonetheless� there
is still a place for caches
 Irregular or dynamic access patterns involving small�
independent transfers and having substantial temporal or interprocess locality will
still bene�t from a cache
 The challenge� then� is to design systems that integrate
the two techniques smoothly
 Despite not having explicit support for collective I�O�
the Galley Parallel File System �Nieuwejaar and Kotz ����	 is one such system� its
disk�directed approach to serving complex requests from individual CPs leads to
excellent performance under many collective access patterns


Future work

There are many directions for future work in this area�

�integrate with I�O�optimizing compilers �Cormen and Colvin ����� Thakur et al

����	�

�optimize concurrent disk�directed activities� and

�explore the possibility of �programmable� IOPs �Kotz and Nieuwejaar ����	


Availability

The full simulator source code is available at

http���www�cs�dartmouth�edu�research�starfish�

The disk�model software can be found via the WWW at URL

http���www�cs�dartmouth�edu�cs�archive�diskmodel�html

Many of the references below are available at

http���www�cs�dartmouth�edu�pario�html
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