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Disk-directed 1/0 for MIMD Multiprocessors

David Kotz

Dartmouth College, Hanover, NH 03755, USA

Many scientific applications that run on today’s multiprocessors, such as weather forecasting and
seismic analysis, are bottlenecked by their file-I/O needs. Even if the multiprocessor is configured
with sufficient I/O hardware, the file-system software often fails to provide the available bandwidth
to the application. Although libraries and enhanced file-system interfaces can make a significant
improvement, we believe that fundamental changes are needed in the file-server software. We
propose a new technique, disk-directed 1/0, to allow the disk servers to determine the flow of data
for maximum performance. Our simulations show that tremendous performance gains are possible
both for simple reads and writes and for an out-of-core application. Indeed, our disk-directed I/O
technique provided consistent high performance that was largely independent of data distribution,
and obtained up to 93% of peak disk bandwidth. It was as much as 18 times faster than either a
typical parallel file system, or a two-phase-1/O library.

Categories and Subject Descriptors: D.4.3 [Operating systems]: File Systems Management—
access methods, file orgamization; D.4.8 [Operating systems]: Performance—simulation; E.5
[Files]

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Parallel I/O, Parallel file system, disk-directed I/O, MIMD,
collective I/O, file caching

1. INTRODUCTION

Scientific applications like weather forecasting, aircraft simulation, molecular dy-
namics, remote sensing, seismic exploration, and climate modeling are increasingly
being implemented on massively parallel supercomputers [Kotz 1996a]. Each of
these applications has intense I/O demands, as well as massive computational re-
quirements. Recent multiprocessors have provided high-performance 1/O hard-
ware [Kotz 1996b], in the form of disks or disk arrays attached to I/O processors
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2 . D. Kotz

connected to the multiprocessor’s interconnection network, but effective file-system
software has lagged behind.

Today’s typical multiprocessor has a rudimentary parallel file system derived from
Unix. While Unix-like semantics are convenient for users porting applications to
the machine, the performance is often poor. Poor performance is not surprising be-
cause the Unix file system [McKusick et al. 1984] was designed for a general-purpose
workload [Ousterhout et al. 1985], rather than for a parallel; scientific workload.
Scientific applications use larger files and have more sequential access [Miller and
Katz 1991; Galbreath et al. 1993; Pasquale and Polyzos 1993; Pasquale and Polyzos
1994]. Parallel scientific programs access the file with patterns not seen in unipro-
cessor or distributed-system workloads. Although there seems to be a wide variety
of access patterns [Nieuwejaar et al. 1996; Crandall et al. 1995; Smirni et al. 1996],
we have noticed many patterns accessing small, discontiguous pieces of the file in
several types of strided pattern [Nieuwejaar and Kotz 1996; Nieuwejaar et al. 1996].
Finally, scientific applications use files for more than loading raw data and storing
results; files are used as scratch space for large problems as application-controlled
virtual memory [Cormen and Kotz 1993; Womble et al. 1993; Brunet et al. 1994;
Klimkowski and van de Geijn 1995]. In short, multiprocessors need new file systems
that are designed for parallel scientific applications.

In this paper we describe a technique, disk-directed 1/0, that is designed specif-
ically for high performance on parallel scientific applications. It is most suited for
MIMD multiprocessors that have no remote-memory access, and that distinguish
between I/O Processors (IOPs), which run the file system, and Compute Proces-
sors (CPs), which run the applications. Figure 1 shows such an architecture. The
IBM SP-2, Intel iPSC, Intel Paragon, KSR/2, Meiko CS-2, nCUBE/2, Thinking
Machines CM-5, and Convex Exemplar all use this model. The architectures of
the Paragon, the CS-2, and the SP-2 allow IOPs to double as CPs, although they
are rarely so configured. Furthermore, our technique is best suited to applications
written in a single-program-multiple-data (SPMD) or data-parallel programming
model. With our technique, described below, CPs collectively send a single request
to all IOPs, which then arrange the flow of data to optimize disk performance.

We begin by advocating that parallel file systems support non-contiguous and
collective data requests. Then, in Sections 3 and 4, we consider some of the ways
to support collective I/O and our implementation of these alternatives. Section 5
describes our experiments, and Section 6 examines the results. We look at some
possible interfaces in Section 7, and consider some generalizations of disk-directed
I/0 in Section 8. We contrast our system to related work in Section 9, and mention
some existing implementations in Section 10. We summarize our conclusions in
Section 11.

2. COLLECTIVE 1/O

Consider programs that distribute large matrices across the processor memories,
and the common task of loading such a matrix from a file. From the point of
view of a traditional file system, that is, with a Unix-like interface, each processor
independently requests its portion of the data, by reading from the file into its
local memory. If that processor’s data is not logically contiguous in the file, as
is often the case [Nieuwejaar et al. 1996], a separate file-system call is needed for
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Fig. 1. A typical MIMD multiprocessor, with separate compute processors (CPs) and I/O pro-
cessors (IOPs). Disks attach only to IOPs, which run the file system code. Applications run only
on the CPs.

each contiguous chunk of the file. The file system is thus faced with concurrent
small requests from many processors, instead of the single large request that would
have occurred on a uniprocessor. Indeed, since most multiprocessor file systems
decluster file data across many disks, each application request may be broken into
even smaller requests, which are sent to different IOPs.

The problem here is that valuable semantic information has been lost. The
application programmer knows that the entire matrix i1s to be transferred between
the file and the multiple CP memories, but is forced by the traditional Unix-like
interface to break that transfer into a series of small, contiguous requests from each
CP. Two important pieces of semantic information have been lost in the translation:
that each request is actually part of a larger data transfer, and that all the CPs are
cooperating in a collective request.

It is sometimes possible to rewrite the application to avoid making tiny, dis-
contiguous requests, particularly if you understand the application and the I/0
system well [Acharya et al. 1996]. Unfortunately, such a rewrite is often difficult,
forcing the application programmer to consider issues like buffering, asynchronous
I/0, prefetching, and so forth, that are better left to the file system. In this paper
we demonstrate a file-system technique that can provide near-optimal I/O perfor-
mance to applications, by allowing applications to request transfers that 1) involve
non-contiguous subsets of the file, and 2) involve all CPs in a collective operation.

Fortunately, there are a few file-system interfaces that allow non-contiguous
transfers. Vesta [Corbett and Feitelson 1996] and the nCUBE file system [DeBene-
dictis and del Rosario 1992] support logical mappings between the file and processor
memories, defining separate “subfiles” for each processor. The Galley [Nieuwejaar
and Kotz 1997] file system’s nested-batched interface allows the programmer to
specify strided, nested-strided, or list-oriented data transfers. The low-level inter-
face proposed by the Scalable-1/O (SIO) Initiative [Corbett et al. 1996b] provides
a subset of Galley’s capability.

There are also a few systems that support a collective-I/0 inlerface, in which
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all CPs cooperate to make a single, large request. Data-parallel languages, such
as CM-Fortran for the CM-5 and C* [Moore et al. 1995], have a collective /O
interface by nature. The emerging MPI-IO standard includes some collective 1/0O
support [Corbett et al. 1996a; MPIO 1996], as does the STO interface [Corbett et al.
1996b]. Finally, there are several libraries for collective matrix I/O [Galbreath et al.
1993; Karpovich et al. 1994; Bordawekar et al. 1993; Bennett et al. 1994; Chen et al.
1996; Toledo and Gustavson 1996; Foster and Nieplocha 1996], and at least one for
more complex data structures [Gotwals et al. 1995].

These interfaces lay the groundwork for non-contiguous, collective I/O transfers.
Although we return to the interface issue in Section 7, this paper focuses on a
high-performance implementation technique to make the best of the information
provided through the interface.

3. COLLECTIVE-I/O IMPLEMENTATION ALTERNATIVES

In this paper we consider collective-read and -write operations that transfer a large
matrix between CP memories and a file. The matrix is stored contiguously within
the file, but the file is declustered, block by block, over many IOPs and disks.
The matrix is distributed among the CPs in various ways, but within each CP the
data is contiguous in memory. We examine three implementation alternatives: a
simple parallel file system, two-phase I/O, and disk-directed I/O. Figure 2 sketches
the implementation of each. We introduce each here, and discuss the details in
Section 4.

Simple parallel file system. This alternative mimics a “traditional” parallel file
system like Intel CFS [Pierce 1989], with IOPs that each manage a cache of data
from their local disks. The interface has no support for collective I/O, or for non-
contiguous requests. Thus, the application must make a separate request to the file
system for each contiguous chunk of the file, no matter how small. Figure 2a shows
the function called by the application on the CP to read its part of a file, and the
corresponding function executed at the IOP to service each incoming CP request.

Two-phase 1/0. Figure 2b sketches an alternative proposed by del Rosario, Bor-
dawekar, and Choudhary [del Rosario et al. 1993; Thakur et al. 1996], which per-
mutes the data among the CP memories before writing or after reading. Thus,
there are two phases, one for I/O and one for an in-memory permutation. The
permutation is chosen so that each CP makes one, large, contiguous, file-system
request. The two-phase-1/O authors call this a “conforming” distribution; the file
1s logically broken into approximately equal-sized contiguous segments, one for each

CP.

Disk-directed I/0. Here, the collective request is passed on to the IOPs, which
then arrange the data transfer as shown in Figure 2¢. This disk-directed model puts
the disks (IOPs) in control of the order and timing of the flow of data. Disk-directed
I/O has several potential advantages over two-phase 1/0:

—The I/O can conform not only to the logical layout of the file, but to the physical
layout on disk (since two-phase I/O is only a library on top of a SPFS, it can-
not access physical layout information). Furthermore, if the disks are actually
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redundant disk arrays (RAIDs), the I/O can be organized to perform full-stripe
writes for maximum performance.

—The disk T/O and the permutation overlap in time, rather than being separated
into two phases, so the smaller of the two (usually the permutation) takes effec-
tively no time.

—There 1s no need to choose a conforming distribution. The choice is difficult, and
is dependent on the file layout, access pattern, access size, and cache-management
algorithm.

—The IOPs are aware that the CPs are involved in a collective request, and can
work to minimize the elapsed time of the entire request. Secondary goals often
implemented in a SPFS IOP’s cache-management and disk-scheduling policies,
such as fairness to all CPs, may be abandoned. (The optimal (but unfair) sched-
ule for some access patterns is to service one CP’s request in its entirety, before
the other CPs are serviced at all.)

—IOP prefetching and write-behind require no guessing, and thus make no mis-
takes.

—Buffer management is perfect, needing little space (two buffers per disk per file),
and capturing all potential locality advantages.

—No additional memory is needed at the CPs for permuting data.

—Each datum moves through the interconnect only once in disk-directed 1/0, and
typically twice in two-phase I/0.

—Communication is spread throughout disk transfer, not concentrated in a per-
mutation phase.

—There i1s no communication among the CPs, other than barriers.

Disk-directed 1/O has several additional advantages over the simple parallel file
system:

—There is only one I/O request to each TOP, reducing overhead.

—Disk scheduling 1s improved, by sorting the complete block list for each disk
(Figure 2¢), rather than dynamically scheduling only the “current” requests.

—There 18 no need for the file-system code on the CPs to know the pattern of
data declustering across disks, allowing more complex declustering schemes to be
implemented.

A note about the barriers in Figure 2c: the cost of the barriers themselves is
negligible compared to the time needed for a large I/O transfer. For some appli-
cations, the waiting time at the first barrier may be a concern if the preceding
computation is poorly balanced across CPs. If so, the programmer may consider
using non-collective disk-directed I/O, in which each process makes its own individ-
ual disk-directed request to the IOPs. The cost of unsynchronized requests may be
much larger than the saved synchronization overhead, however, particularly when
the T/O-access pattern exhibits fine-grained interprocess spatial locality.

4. EVALUATION

We implemented a simple parallel file system, a two-phase-1/O system, and a disk-
directed-1/O system on a simulated MIMD multiprocessor (see below). In this
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Table 1.

Parameters for simulator and our file-system implementations. Those marked with a *

were varied in some experiments. Memput and Memget times are measurements from our code.

IOP bufters (DDIO)
IOP buffers (SPFS, 2PI0)
SPFS outstanding requests to IOP

2 per local disk
2 per local disk per CP
4 per CP per disk

SPES IOP cache replacement LRU

SPES IOP cache prefetch one block ahead on same disk
SPFS IOP cache write-back WriteFull

MIMD, distributed-memory 32 processors

Compute processors (CPs) 16 *

I/0 processors (IOPs) 16 *

CPU speed, type 50 MHz, 32-bit RISC

Disks 16 *

Disk type HP 97560

Disk capacity 1.3 GB

Disk transfer rate
File-system block size
I/0 buses (one per IOP)
1/0 bus type

1/0 bus peak bandwidth

2.11 MB/s, for multi-track transfers
8 KB

16 *

SCSI

10 MB/s

Interconnect topology
Interconnect bandwidth
Interconnect latency
Routing

6 X 6 rectilinear torus

200 x 109 bytes/s, bidirectional
20 ns per router

wormbhole

Memput CPU time (approx)
Memget CPU time (approx)

5 psec + 1 usec/(50 words of data)
5 usec + 2 usec/(50 words of data)

section, we describe our simulated implementation. Many of the parameters are

shown in Table 1.

Files were striped across all disks, block by block. Each IOP served one or more

disks, using one I/O bus. Each TOP had a thread permanently running for each
local disk, that controlled access to the disk device. The disk thread communicated
with threads representing CP requests through a disk-request queue.

Message-passing and DMA. Since we assumed there was no remote-memory ac-
cess, we had to depend on message passing for data transfer. We did assume,
however, that the network interface had a direct-memory access (DMA) capability.
Our implementation used DMA to speed message passing in several ways. Each
message was encoded so that the DMA interrupt handler on the receiving processor
could quickly decide where to deposit the contents of the message. For requests
to the IOP, it copied the message into a free buffer, and woke a sleeping thread
to process the buffer. Part of each request was the address of a reply action, a
structure on the CP which contained the address where a reply could be written,
and the identity of a thread to wake after the reply arrived. The TOP included
this reply-action address in its reply to a request, for the CP’s interrupt handler to
interpret.

In some situations we used “Memget” and “Memput” messages to read and write
the user’s buffer on the CPs. Every recipient CP provided a base address to its

IThroughout this paper, for both rates and capacities, KB means 2'° bytes and MB means 220
bytes.
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message-passing system, so that the requester only referred to offsets within each
CP’s buffer. Memput messages contained data, and returned only an acknowledge-
ment. Memget messages contained a reply-action address, and returned a reply
containing the requested data. It was possible to dynamically “batch” small Mem-
put and Memget requests, to combine many individual data transfers into larger
group transfers.?

Two-phase I/0. Our implementation followed the pseudo-code of Figure 2b.
We chose the same conforming distribution used by the two-phase I/O authors
(actually, a row-block distribution, because we store matrices in row-major or-
der) [Thakur et al. 1996]. Thus, the application made only one, large, contiguous
file-system request to each CP. The data was permuted after reading, using Mem-
puts, or before writing, using Memgets. When the matrix-element size was smaller
than the maximum message size, we allowed the Memput and Memget requests to
be batched into group requests. This decision nearly always led to better perfor-
mance, although it was up to 5% slower in some cases [Kotz 1996¢].

As in a real two-phase-1/O implementation, the code is layered above a simple
parallel file system; we used the simple parallel file system described below. Since
the file is striped across all disks, block by block, the file system turns each CP’s
single contiguous file-system request into a series of block requests to every disk.

Disk-directed 1/0. Each IOP received one request, which was handled by a ded-
icated thread. The thread computed the list of disk blocks involved, sorted the list
by physical disk address, and informed the relevant disk threads. It then allocated
two one-block buffers for each local disk (double buffering), and created a thread
to manage each buffer. While not necessary, the threads simplified programming
the concurrent activities. These buffer threads repeatedly transferred blocks us-
ing Memput and Memget messages to move data to and from the CP memories,
letting the disk thread choose which block to transfer next. When possible the
buffer thread sent concurrent Memget or Memput messages to many CPs. When
the matrix-element size was smaller than the maximum message size, we allowed
the Memput and Memget requests to be batched into group requests. This decision
always led to better performance [Kotz 1996¢].

Simple parallel file system. Our code followed the pseudo-code of Figure 2a. CPs
did not cache data, so all requests involved communication with the IOP. The
CP sent concurrent requests to all the relevant IOPs, with up to four outstanding
requests per disk, per C'P, when possible. Most real systems are much less ag-
gressive. Note that the CP file-system code could only make multiple outstanding
requests to the same disk when presented with a large (multi-stripe) request from
the application.

We limited our CPs to four outstanding requests per disk, per CP, as a form
of flow control, to prevent CPs from overwhelming IOP resources. Based on our
experiments, four outstanding requests led to the fastest file system [Kotz 1996¢].
Each TOP managed a cache that was large enough to provide two buffers for every

2We used a fairly naive approach, with good results [Kotz 1996c]. There are more sophisticated
techniques [Dinda and O'Hallaron 1996].
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outstanding block request from all CPs to all local disks, one for the request and
one for the corresponding prefetch or write-behind request, using a total of eight
buffers per CP per disk. The cache used an LRU-replacement strategy, although
it wrote dirty buffers to disk when they were full (i.e., after n bytes had been
written to an n-byte buffer, though not necessarily in order [Kotz and Ellis 1993]).
It prefetched one block ahead after each read request; this 1s more aggressive than
many traditional Unix file systems, less aggressive than some parallel file systems
(Intel CFS always reads groups of eight blocks, regardless of access pattern [Pierce
1989]), and very effective in the access patterns used in our experiments. New
disk requests were placed into a per-disk priority queue, based on their disk-sector
address, using the Cyclical Scan algorithm [Seltzer et al. 1990], and withdrawn
from the queue by the disk thread when it completed the previous request. This
algorithm was nearly always faster than a First-Come First-Served algorithm; in
one case it was 16% slower [Kotz 1996¢].

We transferred data as a part of request and reply messages, rather than with
Memget or Memput. We tried using Memgets to fetch the data directly from the
CP buffer to the cache buffer, but that was usually slower, and never substantially
faster [Kotz 1996¢]. We nonetheless avoided most memory-memory copies by using
DMA to move data directly between the network and the user’s buffer or between
the network and the IOP’s cache buffers, if possible. At the IOP, incoming write
requests containing the data to write were assigned to an idle thread, with the
message deposited in the thread’s stack until the thread determined where in the
cache to put the data. Later, the thread copied the data into a cache buffer.

While our cache implementation does not model any specific commercial cache
implementation, we believe it is a reasonable competitor for our disk-directed-1/O
implementation. If anything, the competition is biased in favor of the simple parallel
file system, leading to a conservative estimate of the relative benefit of disk-directed
I/0, due to the following simplifications:

—The total cache provided, eight buffers per CP, per disk, per file, grows quadrat-
ically with system size and is thus not scalable (disk-directed I/O only needs two
buffers per disk per file). This size is quite generous; for example, there is 64 MB
cache per TIOP per file, for IOPs with 2 local disks in a system with 512 CPs and
an 8 KB block size.

—The static flow control resulting from our limiting each CP to four outstanding
requests per disk (made possible by our large cache) saved the extra latency and
network traffic of a dynamic flow-control protocol.

—We assumed that write requests from different CPs would not overlap, avoiding
the need to ensure that writes were performed in the same relative order at all
IOPs. Although valid for all of the access patterns in our experiments, a real
system would have extra overhead needed to guarantee proper ordering, or a flag
like Vesta’s reckless mode [Corbett and Feitelson 1996].

—We arranged for the application program to transfer the largest possible con-
tiguous pieces of the file, within the constraints of the specified access pattern,
rather than to access individual matrix elements. For most access patterns this
arrangement led to much better performance. Although this optimization seems
obvious, a surprising number of applications read contiguous data in tiny pieces,
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one by one, when a single large contiguous request might have served the same
purpose [Nieuwejaar et al. 1996].

4.1 Simulator

The implementations described above ran on top of the Proteus parallel-architecture
simulator [Brewer et al. 1991], which in turn ran on a DEC-5000 workstation. We
configured Proteus using the parameters listed in Table 1. These parameters are not
meant to reflect any particular machine, but a generic machine of 1994 technology.

Proteus itself has been validated against real message-passing machines [Brewer
et al. 1991]. Proteus has two methods for simulating the interconnection network:
an exact simulation that models every flit movement, and a modeled simulation
that uses stochastic techniques to estimate network contention and its effect on
latency. Both methods assume that each processor has a deep hardware FIFO for
incoming messages. To reduce the effect of this assumption, we added flow control
to limit our use of this FIFO.

We compared the effect of the network model on a subset of our experiments,
some with thousands of tiny messages, and some with many large messages, and
found that the results of each experiment using the stochastic model differed from
the same experiment using the exact network by at most 5.4%, and typically by
less than 0.1%. Thus, our experiments used the stochastically modeled network.

We added a disk model, a reimplementation of Ruemmler and Wilkes’ HP 97560
model [Ruemmler and Wilkes 1994]. We validated our model against disk traces
provided by HP, using the same technique and measure as Ruemmler and Wilkes.
Our implementation had a demerit percentage of 3.9%, which indicates that it
modeled the 97560 accurately [Kotz et al. 1994].

5. EXPERIMENTAL DESIGN

We used the simulator to evaluate the performance of disk-directed 1/O; with the
throughput for transferring large files as our performance metric. The primary
factor used in our experiments was the file system, which could be one of four al-
ternatives: the simple parallel file system, two-phase 1/O layered above the simple
parallel file system, disk-directed, or disk-directed with block-list presort. We re-
peated our experiments for a variety of system configurations; each configuration
was defined by a combination of the file-access pattern, disk layout, number of CPs,
number of IOPs, and number of disks. Each test case was replicated in five inde-
pendent trials, to account for randomness in the disk layouts, disk initial rotational
positions, and in the network. The total transfer time included waiting for all /O
to complete, including outstanding write-behind and prefetch requests.

The file and disk layout. Our experiments transferred a one- or two-dimensional
array of records. Two-dimensional arrays were stored in the file in row-major
order. The file was striped across disks, block by block. The file size in all cases
was 10 MB (1280 8-KB blocks). While 10 MB is not a large file, preliminary tests
showed qualitatively similar results with 100 and 1000 MB files (see page 26). Thus,
10 MB was a compromise to save simulation time.

Within each disk, the blocks of the file were laid out according to one of two
strategies: contiguous, where the logical blocks of the file were laid out in consecu-
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tive physical blocks on disk, or random-blocks, where blocks were placed at random
physical locations. We used the same set of five layouts (one for each trial) for all
random-blocks experiments. A real file system would be somewhere between the
two. As a validation, however, we experimented with a compromise random-tracks
layout. In this layout, we chose a random set of physical tracks, and placed blocks
consecutively within each track. We found our results to be qualitatively similar,
and quantitatively between the contiguous and random-blocks layouts, so we only
treat the two extremes here.

The access patterns. Our read- and write-access patterns differed in the way the
array elements (records) were mapped into CP memories. We chose to evaluate
the array-distribution possibilities available in High-Performance Fortran [HPFF
1993], as shown in Figure 3. Thus, elements in each dimension of the array could
be mapped entirely to one CP (NONE), distributed among CPs in contiguous
blocks (BLOCK; note this is a different “block” than the file system “block™), or
distributed round-robin among the CPs (CYCLIC). We name the patterns using
a shorthand beginning with r for reading an existing file or w for writing a new
file; the r names are shown in Figure 3. There was one additional pattern, ra
(ALL, not shown), which corresponds to all CPs reading the entire file, leading to
multiple copies of the file in memory. Note that rb and wb are the “conforming
distributions” used by two-phase 1/O. Table 2 shows the exact shapes used in our
experiments. A few patterns are redundant in our configuration (rnn = rn, rnc =
rc, rbn = rb) and were not actually used.

We chose two different record sizes, one designed to stress the system’s capa-
bility to process small pieces of data, with lots of interprocess locality and lots of
contention, and the other designed to work in the most-convenient unit, with little
interprocess locality or contention. The small record size was 8 bytes, the size of
a double-precision floating point number. The large record size was 8192 bytes,
the size of a file-system block and cache buffer. These record-size choices are rea-
sonable [Nieuwejaar et al. 1996]. We also tried 1024-byte and 4096-byte records
(Figure 15), leading to results between the 8-byte and 8192-byte results; we present
only the extremes here.

In the simple-system case, recall that the application makes file-system requests
for whole chunks, which may be much larger than individual records (Table 2).
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Fig.3. Examples of matrix distributions, which we used as file-access patterns in our experiments.

HPF array-distribution patterns

o] 1]2]3]

o[ [2]z]ofJ2]3

These examples represent common ways to distribute a 1x8 vector or an 8x8 matrix over four
processors. Patterns are named by the distribution method (NONE, BLOCK, or CYCLIC) in
each dimension (rows first, in the case of matrices). Each region of the matrix is labeled with
the number of the CP responsible for that region. The matrix is stored in row-major order, both
in the file and in memory. The chunk size (cs) is the size of the largest contiguous chunk of the
file that is sent to a single CP (in units of array elements), and the stride (s) is the file distance
between the beginning of one chunk and the next chunk destined for the same CP, where relevant.
The actual shapes used in our experiments are listed in Table 2.
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Table 2. Summary of file-access patterns (smaller examples of these patterns are shown in Fig-
ure 3). We list only the read patterns here. All numbers are for a 10 MB file distributed over
16 CPs. Two-dimensional matrices are stored in the file in row-major order. A dash (-) indicates
“not applicable.” Chunks and strides are given in records, not bytes (for 8-byte records, notice

that 1 K records are one block). The rcc pattern has two different strides.

Record Chunk
Pattern  Row Column size size Stride
name distribution  distribution  (bytes) Rows Cols (records) (records)
ra ALL - - - - 1280 blocks -
rn NONE - - - - 1280 blocks -
rb BLOCK - 8 1310720 - 80 K -
rc CYCLIC - 8 1310720 - 1 16
rnn NONE NONE 8 1280 1024 1280 K -
rnb NONE BLOCK 8 1280 1024 64 1K
rnc NONE CYCLIC 8 1280 1024 1 16
rbn BLOCK NONE 8 1280 1024 80K -
rbb BLOCK BLOCK 8 1280 1024 256 1K
rbc BLOCK CYCLIC 8 1280 1024 1 4
rcn CYCLIC NONE 8 1280 1024 1K 16 K
rcb CYCLIC BLOCK 8 1280 1024 256 4K
rcc CYCLIC CYCLIC 8 1280 1024 1 4, 3K+4
rb BLOCK - 8192 1280 - 80 -
rc CYCLIC - 8192 1280 - 1 16
rnn NONE NONE 8192 40 32 1280 -
rnb NONE BLOCK 8192 40 32 2 32
rnc NONE CYCLIC 8192 40 32 1 16
rbn BLOCK NONE 8192 40 32 80 -
rbb BLOCK BLOCK 8192 40 32 8 32
rbc BLOCK CYCLIC 8192 40 32 1 4
rcn CYCLIC NONE 8192 40 32 32 512
rcb CYCLIC BLOCK 8192 40 32 8 128

rcc CYCLIC CYCLIC 8192 40 32 1 4, 100
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6. RESULTS

Figures 4-7 show the performance of the three techniques. All experiments used 16
CPs, 16 disks, and 16 IOPs. Because the ra pattern broadcasts the same 10 MB
data to all 16 CPs, its apparent throughput was inflated. We have normalized ra
throughput in all of our graphs by dividing by the number of CPs.

Figures 4 and b display the performance on a random-blocks disk layout: Figure 4
for patterns with 8-byte records, and Figure 5 for patterns with 8192-byte records.
On each graph, four cases are shown for each access pattern: simple parallel file
system (SPFS), two-phase I/O (2PIO), and disk-directed I/O (DDIO) with and
without a presort of the block requests by physical location. Note that the disks’
peak multi-track transfer rate was 33.8 MB/s, but with a random-blocks disk layout
it was impossible to come close to that throughput. Throughput for disk-directed
I/O with presorting consistently reached 6.3 MB/s for reading and 7.3 MB/s for
writing. In contrast, SPFS throughput was highly dependent on the access pattern,
was never faster than 5 MB/s, and was particularly slow for many 8-byte patterns.
Cases with small chunk sizes were the slowest, as slow as 0.8 MB/s, due to the
tremendous number of requests required to transfer the data. As a result, disk-
directed I/O with presorting was up to 8.7 times faster than the simple parallel file
system.

Figures 4 and 5 also make clear the benefit of presorting disk requests by physical
location, an optimization available in disk-directed I/O to an extent not possible
in the simple parallel file system or in two-phase 1/O. Even so, disk-directed 1/0
without presorting was faster than the simple parallel file system in most cases. At
best, it was 5.9 times faster; at worst, there was no noticeable difference. Disk-
directed 1/O thus improved performance in two ways: by reducing overhead and
by presorting the block list.

Figures 4 and 5 demonstrate the mixed results of two-phase I/O. Tt was slightly
slower than the simple parallel file system for most patterns with 8-KB records,
because it did not overlap the permutation with the I/O. Of the statistically
significant differences, most were only 2-4%, although in the ra pattern two-phase
I/O was 16% slower. Two-phase 1/O did substantially improve performance (by
as much as 5.1 times) on small-chunk-size patterns. Two-phase I/O matched the
performance of disk-directed I/O without presorting in most patterns, although
disk-directed T/O was still about 20% faster in ra and some 8-byte cyclic patterns,
because it could overlap the costly permutation with the disk 1/O. With disk-
directed T/0’s additional advantage of presorting the block list, it was 41-79%
faster than two-phase 1/0.

To test the ability of the different file-system implementations to take advantage
of disk layout, and to expose other overheads when the disk bandwidth could be
fully utilized, we compared the two methods on a contiguous disk layout (Figures 6
and 7). I/O on this layout was much faster than on the random-blocks layout,
by avoiding the disk-head movements caused by random layouts and by benefiting
from the disks’ own read-ahead and write-behind caches. In most cases disk-directed
I/0 moved about 31.4 MB/s, which was a respectable 93% of the disks’ peak multi-
track transfer rate of 33.8 MB/s. The few cases where disk-directed I/0 did not
get as close to the peak disk transfer rate were affected by the overhead of moving
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Throughput (MB/s) of random-blocks layout
on patterns with 8-byte records
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Fig. 4. Comparing the throughput of disk-directed I/O (DDIO) to that of two-phase I/O (2PIO)
and the simple parallel file system (SPFS), on a random-blocks disk layout using patterns with
an 8-byte record size. ra throughput has been normalized by the number of CPs. Each point
represents the average of five trials of an access pattern (the maximum coefficient of variation (cv)
is 0.042, except for 0.32 on wc on SPFS).
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Throughput (MB/s) of random-blocks layout
on patterns with 8192-byte records
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Fig. 5. Comparing the throughput of disk-directed I/O (DDIO) to that of two-phase I/O (2PIO)
and the simple parallel file system (SPFS), on a random-blocks disk layout using patterns with
an 8192-byte record size. ra throughput has been normalized by the number of CPs. Each point
represents the average of five trials of an access pattern (the maximum cv) is 0.031).
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individual 8-byte records to and from the CPs. (In our earlier results [Kotz 1994],
the performance was worse: the “batched” Memput and Memget operations used
here improved performance by 10-24% on these patterns [Kotz 1996¢].)
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Throughput (MB/s) of contiguous layout
on patterns with 8-byte records
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Fig. 6. Comparing the throughput of disk-directed I/O (DDIO), two-phase I/O (2PIO), and
the simple parallel file system (SPFS), on a contiguous disk layout, using access patterns with
8-byte records. Note that “DDIO” and “DDIO sort” are identical here, because the logical block
numbers are identical to the physical block numbers, so the sort is a no-op. ra throughput has
been normalized by the number of CPs. Each point represents the average of five trials of an
access pattern (the maximum cv is 0.052, except for 0.25 on 8-byte wc on SPFS). Note that the
peak disk throughput was 33.8 MB/s.
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Throughput (MB/s) of contiguous layout
on patterns with 8192-byte records
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Fig. 7. Comparing the throughput of disk-directed I/O (DDIO), two-phase I/O (2PIO), and
the simple parallel file system (SPFS), on a contiguous disk layout, using access patterns with
8192-byte records. Note that “DDIO” and “DDIO sort” are identical here, because the logical
block numbers are identical to the physical block numbers, so the sort is a no-op. ra throughput
has been normalized by the number of CPs. Each point represents the average of five trials of an
access pattern (the maximum cv is 0.024). Note that the peak disk throughput was 33.8 MB/s.
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Discussion. The simple parallel file system was often unable to obtain the full
disk bandwidth, and had particular trouble with the 8-byte patterns. Although
there were cases where the simple parallel file system could match disk-directed
I/0, disk-directed I/O was as much as 18.1 times faster than the simple parallel
file system. The simple parallel file system had several difficulties:

—When the CPs were using patterns with 8-byte chunks (re, rbe, ree, we, wbe,
and wee), many IOP-request messages were necessary to transfer the small non-
contiguous records, requiring many expensive IOP-cache accesses. It could have
been worse: the cache successfully caught the interprocess spatial locality of
these patterns; if the CPs had been poorly synchronized the cache would have
thrashed.

—When the CPs were active at widely different locations in the file (e.g., in rb,
rbb, rbc, or ree, with 8 KB records), there was little interprocess spatial locality.
In the contiguous layout, these multiple localities defeated the disk’s internal
caching and caused extra head movement, both a significant performance loss.
Fortunately, disk scheduling and the ability to request up to four blocks per CP
per disk allowed the rb pattern (which transfers data in large chunks) to avoid
most of this problem [Kotz 1996¢]. In doing so, it used a schedule that allowed
some CPs to progress much more quickly than others; this is an example of an
instance where load imbalance and service that is unfair to some CPs can lead
to much better collective performance.

—Patterns reading medium-sized chunks (rbb, rbe, rcc with 8 KB records) were
slow because the application made only one request at a time (to each CP), and
the small chunk size prevented the CPs from issuing many requests to the IOPs.
The IOPs’ disk queues thus had few requests, and thus the disk was forced to
seek from one region to another. The same patterns, when mapped onto a larger
file (1000 MB), had large chunks, and thus were able to fill the disk queues and
realize the full bandwidth (not shown).

The corresponding write patterns (wbb, wbc, wee), however, were more successful.
The TIOP caches were large enough (4 MB) to hold much of the file (10 MB). The
numerous small CP writes completed quickly, filling the cache and thus filling
the disk queues,; leading to a disk schedule nearly as efficient as that used in

disk-directed I/O. This effect would be negligible in a huge file.

—The high data rates of the contiguous disk layout expose the cache-management
overhead in the simple parallel file system, particularly in the access patterns
with small chunks.

Two-phase I/O usually helped avoid the worst troubles of the simple parallel file
system, particularly for small records. It had several problems of its own, however:

—Despite making larger requests to the file system, the flow-control limitations
prevented it from making enough requests to the IOPs to fill the disk queues as
well as disk-directed 1/0O, so it was less able to optimize the disk accesses in the
random-blocks layout.

—The additional permutation step prevented it from matching disk-directed 1/0
performance in most patterns, even with 8192-byte records and a contiguous lay-
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out. Indeed, the cost of the permutation occasionally resulted in lower through-
put than the simple parallel file system, even for 8-byte records.

Disk-directed I/O was not perfect, of course. Note that disk-directed I/O chose
the same (optimal) disk schedule for all access patterns. Thus, any difference in
performance between two access patterns was due to the time spent delivering the
data to CPs when reading, or gathering the data from CPs when writing. 1OP
double-buffering allowed this communication to overlap the I/O. The I/O time was
sufficiently high in the random-blocks layout to cover the communication overhead
of all access patterns. The I/O time was low in the contiguous layout, but still large
enough to cover the communication time in most access patterns. The patterns
with 8-byte chunks (re, rbe, rec, we, wbe, and wee), however, required a lot of
communication and computation from the IOP, which became the limiting factor
in the performance.

Indeed, in one case (8-byte rbe in the contiguous layout), disk-directed 1/0
was 8% slower than two-phase I/O. In this situation, where communication was
the limiting factor, the optimal I/O pattern was not the optimal communication
pattern. The optimal I/O pattern read the file from beginning to end, which meant
that the rows of the matrix were read in increasing order. In our rbc distribution
(see Figure 3 and Table 2) this ordering meant that the IOPs were communicating
with only four CPs at a time, leading to network congestion. In the two-phase-1/0O
permutation phase, however, all sixteen CPs were communicating simultaneously,
with less congestion. The solution would be to have each IOP rotate its I/O list by
a different amount, so as to start its I/O pattern at a different point, costing one
disk seek but staggering the communications and reducing congestion.

Summary. The above results give a rough picture of the kind of performance
improvements possible in a workload that reads and writes matrices in files. To
summarize, consider the ratio of the throughput offered by disk-directed 1/0, or
two-phase I/O, to that offered by the simple parallel file system on particular access
pattern. A ratio greater than one indicates that the method was faster than the
simple parallel file system on that access pattern. We summarize that “improvement
factor” across all access patterns, looking at the minimum, geometric mean [Jain
1991, page 191], and maximum:

Method | minimum geometric mean maximum
DDIO sort 1.00 1.64 18.10
DDIO no sort 1.00 1.18 5.88
2PIO 0.44 1.20 17.83

We include “DDIO no sort” only for comparison, as one would always want to use
the sorting feature; these numbers apply only to the random disk layout. We can
see that although DDIO (with sorting) sometimes makes no difference (ratio 1.00),
it is on average 64% faster, and was up to 18 times faster. Although two-phase 1/0O
was also about 18 times faster on one case (8-byte wbc), it was otherwise no more
than 8.24 times faster, sometimes much slower than the simple parallel file system,
and only 20% faster on average.
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Throughput of SPFS and DDIO, varying number of CPs
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Fig. 8. A comparison of the throughput of disk-directed I/O (DDIO) and the simple parallel file
system (SPFS), as the number of CPs varied, for the ra, rn, rb, and rc patterns (ra throughput
has been normalized by the number of CPs). All cases used the contiguous disk layout, and all
used 8 KB records. See Figure 9 for 2PIO results.

6.1 Sensitivity

To evaluate the sensitivity of our results to some of the parameters, we indepen-
dently varied the number of CPs, number of IOPs, number of disks, file size, and
record size. It was only feasible to experiment with a subset of all configurations, so
we chose a subset that would push the limits of the system by using the contiguous
layout, and exhibit most of the variety shown earlier, by using the patterns ra,
rn, rb, and rc with 8 KB records. ra throughput was normalized as usual (see
the beginning of Section 6). Since the conclusions from two-phase 1/O were nearly
always the same as those from the simple parallel file system, we plot two-phase
I/0O only where the conclusions differ from the simple parallel file system.

We first varied the number of CPs (Figure 8), holding the number of IOPs and
disks fixed, and maintaining the cache size for the simple parallel file system at eight
buffers per disk per CP. It may seem unusual to consider a configuration with fewer
CPs than IOPs. Most multiprocessors are shared, however, so it is not unlikely for
an application to occasionally run on a small subset of CPs, while accessing files
that are declustered across the larger, complete set of IOPs.

Most cases were unaffected; the most interesting effect was the poor performance
of the simple parallel file system on the rc pattern. Recall that in the simple parallel
file system all the parallelism 1s generated by the CPs, either from splitting large
requests into concurrent smaller requests, or from several CPs making concurrent
requests. With 1-block records and no buffers at the CP, each file-system call could
only use one disk, and then with only one outstanding request. With fewer CPs
than TOPs, the full disk parallelism was not used.

Unlike in our other variations, below, two-phase I/O behaved quite differently
from the simple parallel file system. Results from the contiguous layout are shown
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Throughput of SPFS and 2PIO, varying number of CPs
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Fig. 9. A comparison of the throughput of two-phase I/O (2PIO) and the simple parallel file
system (SPFS), as the number of CPs varied, for the ra, rn, rb, and rc patterns (ra throughput
has been normalized by the number of CPs). All cases used the contiguous disk layout, and all
used 8 KB records. See Figure 8 for DDIO results.

in Figure 9. Similar results were found with the random-blocks layout (not shown).
As with the simple parallel file system, the rb throughput was unaffected by the
number of CPs. Since rb was the I/O access pattern always used by two-phase
I/0, the reduced throughput seen for ra, rn, and rc was due entirely to slowness
in the permutation. With one CP, the permutation was local to one CP, and was
thus fairly fast (it would have matched rb if the code were changed to test for this
special case, avoiding the permutation). Otherwise, the permutation throughput
steadily improved for rn and rc, as more CPs provided more CPUs, memories, and
network interfaces for moving the data. The normalized permutation throughput
decreases for ra, due to increasing contention in this all-to-all permutation (recall
that for ra the amount of data moved increases with the number of CPs).

We then varied the number of IOPs (and SCSI busses), holding the number of
CPs, number of disks, and total cache size fixed (Figure 10). Performance decreased
with fewer IOPs because of increasing bus contention, particularly when there were
more than two disks per bus, and was ultimately limited by the 10 MB/s bus
bandwidth. Indeed, with 2 IOPs the simple parallel file system was 13% faster
than disk-directed I/O in the rn and rc patterns, due to a subtle implementation
issue.3

3Disk-directed I/O used three bus transactions when reading, rather than two: first, the host
asked the disk to prefetch the desired block into its cache; second, the host asked the disk to
transfer the data to the host; third, the disk transferred the data to the host. The first request
is unusual, but our implementation sometimes knew the identity of the next block before it knew
the location of the buffer that would hold the data. This scheme normally improved performance,
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Throughput of SPFS and DDIO, varying number of IOPs
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Fig. 10. A comparison of the throughput of disk-directed I/O (DDIO) and the simple parallel
file system (SPFS), as the number of IOPs (and busses) varied, for the ra, rn, rb, and
rc patterns (ra throughput has been normalized by the number of CPs). All cases used the
contiguous disk layout, and all used 8 KB records. The maximum bandwidth was determined by

either the busses (1-2 IOPs) or the disks (4-16 IOPs).

We then varied the number of disks, using one IOP, holding the number of CPs
at 16, and maintaining the simple-system cache size at eight buffers per CP per
disk (Figures 11 and 12). Performance scaled with more disks, approaching the 10
MB/s bus-speed limit. The simple parallel file system had particular difficulty with
the rb and ra patterns. The large chunk sizes in these patterns sent a tremendous
number of requests to the single IOP, and it appears that throughput was degraded
by the overhead on the IOP CPU.

but when the bus was congested, the extra delay slowed down the file system.
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Throughput of SPFS and DDIO on contiguous layout, varying number of disks
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Fig. 11. A comparison of the throughput of disk-directed I/O (DDIO) and the simple parallel
file system (SPFS), as the number of disks varied, for the ra, rn, rb, and rc patterns (ra
throughput has been normalized by the number of CPs). All cases used the contiguous disk
layout, and all used 8 KB records. The maximum bandwidth was determined either by the disks
(14 disks) or by the (single) bus (8-32 disks).

Throughput of SPFS and DDIO on random-blocks layout, varying number of disks
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Fig. 12. Similar to Figure 11, but here all cases used the random-blocks disk layout. DDIO used
the block-presort.
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Throughput of SPFS and DDIO on contiguous layout, varying file size
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Fig. 13. A comparison of the throughput of disk-directed I/O (DDIO) and the simple parallel
file system (SPFS), as the file size varied, for the ra, rn, rb, and rc patterns (ra throughput
has been normalized by the number of CPs). All cases used the contiguous disk layout, and all
used 8 KB records.

In most of this paper we simulate 10 MB files. To examine the effect of this
choice, Figures 13 and 14 compare throughputs for files 10 and 100 times larger.
Though the maximum throughputs were reached with files 100 MB or larger, we
chose 10 MB for simulation efficiency. The relative order of test cases remained
the same. The maximum throughput attained was 33.5 MB/s, which is 99% of the
peak disk-transfer bandwidth.
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Throughput of SPFS and DDIO on random-blocks layout, varying file size

9 T T T T
8 -
DDIOra <—
DDIOm —+—
7 DDIOrb &—
DDIO rc —~<—
6 SPFSra -o--
B SPFSrm -+-- ]
SPFSrb -83--
® 5 SPFSrc -x--
o et B e L e R R R e e AR g
= 4l i
3 - .
2 - -
1 - -
o 1 1 1 1
0 200 400 600 800 1000

File size in MB

Fig. 14. A comparison of the throughput of disk-directed I/O (DDIO) and the simple parallel
file system (SPFS), as the file size varied, for the ra, rn, rb, and rc patterns (ra throughput has
been normalized by the number of CPs). All cases used the random-blocks disk layout, and all
used & KB records. Here, disk-directed I/O includes a presort; similar conclusions were obtained
without the presort.
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Throughput of SPFS on rc, varying record size
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Fig. 15. The throughput of the simple parallel file system on rc patterns of various record sizes,
for both the contiguous and random-blocks layouts.

In this paper we focus on 8- and 8192-byte record sizes. Figure 15 shows the effect
of other record sizes in situations where the record size was expected to make the
most difference: in the simple parallel file system on rc, using both contiguous and
random-blocks layouts. This plot justifies our focus on the extremes; 8-byte records
limited throughput through excessive overhead, while 8192-byte records reduced
overhead and exposed other limits (here, the disk bandwidth in the random-blocks
layout).

Summary. These variation experiments showed that while the relative benefit
of disk-directed I/O over two-phase I/O or the simple parallel file system varied,
disk-directed I/O consistently provided excellent performance, almost always better
than the simple parallel file system, often independent of access pattern, and often
close to hardware limits.
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7. INTERFACES FOR DISK-DIRECTED 1/0

There are two interfaces that are important to consider when implementing a disk-
directed I/O system: the application programmer’s interface (API), and the internal
CP-IOP interface. Although we do not propose any specific interfaces in this paper,
it should be possible to use any of several existing interfaces in the construction of
a disk-directed I/O system.

7.1 Application-programmer’s interface (API)

The interesting characteristic of an API is its capability to specify which parts of the
file are desired, and how the data is distributed among the CPs’ buffers. Perhaps
the most common behavior is to collectively transfer a data set that is contiguous
within the file, but distributed among processor memories in some interesting way.
There are at least three fundamental styles of API for parallel 1/O, each of which
provides a different kind of solution to this problem.

The first style allows the programmer to directly read and write data structures
such as matrices; Fortran provides this style of interface, as do many libraries [Gal-
breath et al. 1993; Karpovich et al. 1994; Bennett et al. 1994; Seamons et al. 1995;
Thakur et al. 1996]. Some object-oriented interfaces go even further in this direc-
tion [Krieger and Stumm 1996; Karpovich et al. 1994; Seamons et al. 1995]. As long
as your data structure can be described by a matrix, and the language or library
also provides ways to describe distributed matrices, this interface provides a neat
solution.

The second style provides each processor its own “view” of the file, in which
non-contiguous portions of the file appear to be contiguous to that processor. By
carefully arranging the processor views, the processors can use a traditional I/0O-
transfer call that transfers a contiguous portion of the file (in their view) to or from
a contiguous buffer in their memory, and yet still accomplish a non-trivial data
distribution. The most notable examples of this style include a proposed nCUBE
file system [DeBenedictis and del Rosario 1992], Vesta [Corbett and Feitelson 1996],
and MPI-TIO [Corbett et al. 1996a; MPIO 1996].

The third style has neither an understanding of high-level data structures; like
the first, nor per-process views of the file, like the second. Each call specifies
the bytes of the file that should be transferred. This interface is common when
using the C programming language in most MIMD systems, although many have
special file-pointer modes that help in a few simple situations (Intel CFS [Pierce
1989] and TMC CMMD [Best et al. 1993], for example). None of these allow the
processor to make a single file-system request for a complex distribution pattern.
More sophisticated interfaces, such as the nested-batched interface [Nieuwejaar and
Kotz 1996], can specify a list, or a strided series, of transfers in a single request.
This latter interface is perhaps the most powerful (efficient and expressive) of this
style of interface.

Any of the above interfaces that support collective requests and can express
non-trivial distributions of data among the processor memories, would be suffi-
cient to support disk-directed I/O. These include (at least) HPF and other SPMD
languages, the nested-batched interface [Nieuwejaar and Kotz 1996] with collec-
tive extensions, Vesta [Corbett and Feitelson 1996], MPI-IO [Corbett et al. 1996a;
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MPIO 1996], and most of the matrix libraries [Galbreath et al. 1993; Karpovich
et al. 1994; Bennett et al. 1994; Seamons et al. 1995; Thakur et al. 1996].

7.2 CP-IOP interface

Once the application programmer has expressed the desired data transfer, how do
the compute processors communicate that information to all of the IOPs, and how
do the IOPs use the information to arrange the data transfer?

In the experiments of Section 5, all of the possible data-distribution patterns (e.g.,
block-cyclic) were understood by the TOPs, so the CPs needed only to request a
particular distribution pattern and to provide a few parameters. A more realistic
system should be more flexible: it should support the common matrix distributions
easily, and it should support arbitrary distributions and irregular data structures.

Fortunately, several compiler groups have developed compact parameterized for-
mats for describing matrix distributions [Brezany et al. 1995; Thakur et al. 1994].
This compact description of the distribution pattern, generated by a compiler or
a matrix-support library, can be passed to the IOPs. A few calculations can tell
the IOP which file blocks i1t should be transferring, and for each file block, the
in-memory location of the data (CP number and offset within that CP’s buffer).

To support complex or irregular distributions, each CP can send a single nested-
batched request [Nieuwejaar and Kotz 1996] to each TOP. Such requests can capture
complex but regular requests in a compact form, but can also capture completely
irregular requests as a list. These compact requests can be easily converted into a
list of blocks, for /O, and later used for mapping each block into the in-memory
location (CP number, CP offset) of the data [Kotz 1995b].

The combination of the compact parameterized descriptions for common matrix
distributions, and the fully general nested-batched interface [Nieuwejaar and Kotz
1996], are sufficient to support disk-directed 1/O efficiently.

8. EXPANDING THE POTENTIAL OF DISK-DIRECTED 1/0

The idea of disk-directed I/O can be expanded to include several other interesting
possibilities [Kotz 1995a]. Assuming some mechanism exists to run application-
specific code on the IOPs, the IOPs could do more with the data than simply
transfer it between CP memories and disk.

Data-dependent distributions. In some applications, the data set must be divided
among the CPs according to the value of the records, rather than their position in
the file. Using a simple parallel file system, it is necessary to use a two-phase 1/0
approach. The CPs collectively read all of the data into memory. As each record
arrives at a CP, the CP examines the record, determines the actual destination of
that record, and sends the record to the appropriate destination CP. By moving this
distribution function to the IOPs, the data could be sent directly to the destination
CP, halving the total network traffic (for experimental results, see [Kotz 1995al).
Unless the additional work overloads the IOPs, reduced network traffic would lead
to better throughput in systems with slow or congested networks.

Data-dependent filtering. Some applications wish to read a subset of the records
in a file, where the subset is defined by the value of the data in the records, rather
than their position in the file. Using a simple parallel file system, the CPs must
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read all of the data, and then discard the undesired records. By moving this
record-filtering function to the IOPs; undesired records would never be sent to CPs,
reducing network traffic (for experimental results, see [Kotz 1995a]). In systems
with slow or congested networks, that lower traffic would lead to better throughput.
A similar technique has already been demonstrated in some database systems [Borr

and Putzolu 1988].

9. RELATED WORK

Disk-directed T/O is somewhat reminiscent of the PIFS (Bridge) “tools” inter-
face [Dibble 1990], in that the data flow is controlled by the file system rather
than by the application. PIFS focuses on managing where data flows (for memory
locality), whereas disk-directed I/O focuses more on when data flows (for better
disk and cache performance).

Some parallel database machines use an architecture similar to disk-directed I/0,
in that certain operations are moved closer to the disks to allow for more optimiza-
tion. By moving some SQL processing to the IOPs, one system was able to filter
out irrelevant tuples at the IOPs, reducing the data volume sent to the CPs [Borr
and Putzolu 1988].

Some matrix-1/0 libraries significantly improve performance by changing the un-
derlying matrix storage format [Karpovich et al. 1994; Sarawagi and Stonebraker
1993; Seamons and Winslett 1994; Toledo and Gustavson 1996]. These libraries
could use a disk-directed file system to obtain even better performance, transpar-
ently to the end user.

The Jovian collective-I/O library [Bennett et al. 1994] tries to coalesce fragmented
requests from many CPs into larger requests that can be passed to the IOPs. Their
“coalescing processes” are essentially a dynamic implementation of the two-phase-
I/O permutation phase.

Transparent Informed Prefetching (TTP) enables applications to submit detailed
hints about their future file activity to the file system, which can then use the hints
for accurate, aggressive prefetching [Patterson et al. 1995]. Aggressive prefetching
serves to provide concurrency to disk arrays, and deeper disk queues to obtain
better disk schedules. In this sense TIP and disk-directed 1/O are similar. TIP,
however, has no explicit support for parallel applications, let alone collective 1/O,
and thus would need to be extended. Furthermore, once an application provides
hints to TIP it uses the traditional Unix-like file-system interface, retaining the
overhead of processing many tiny requests. The application requests I/O in the
same sequence, limiting the potential for reordering within the disk queues due to
limited buffer space. Finally, TIP offers no benefits for writing, only for reading.

Our model for managing a disk-directed request, that is, sending a high-level
request to all IOPs which then operate independently under the assumption that
they can determine the necessary actions to accomplish the task, is an example
of collaborative execution like that used in the TickerTATP RAID controller [Cao
et al. 1994].

Finally, our Memput and Memget operations are not unusual. Similar remote-
memory-access mechanisms are supported in a variety of distributed-memory sys-

tems [Wheat et al. 1994; Culler et al. 1993; Hayashi et al. 1994].
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10. IMPLEMENTATIONS OF DISK-DIRECTED I/0O

The original appearance of this research [Kotz 1994] inspired several other research
projects.

ENWRICH [Purakayastha et al. 1996] uses our simulator to investigate the vi-
ability of CP caching in write-only access patterns. In ENWRICH, CPs using a
traditional Unix-like application interface accumulate small writes in local buffers,
then use disk-directed I/O to collectively flush the buffers when they become full.

The Panda library for collective matrix I/O uses a variant of disk-directed 1/0O
they call server-directed I/0 [Seamons et al. 1995; Chen et al. 1996]. Panda is
implemented on top of a traditional Unix file system, so they cannot obtain infor-
mation about the physical disk layout to use in their preliminary sort. Otherwise,
Panda’s technique is like ours. Results from their implementation on an IBM SP-2
validate the benefits of disk-directed I/O over a non-collective, client-directed ap-
proach.

The Galley parallel file system [Nieuwejaar and Kotz 1997] provides a compro-
mise interface: 1t has no collective requests, but it has structured requests that
allow strided chunks of the file to be transferred in a single request. The imple-
mentation essentially uses a non-collective version of disk-directed I/O: a single
complex request is sent from each CP to the IOP in the form of a list of contiguous
chunks to be transferred from that IOP’s disk to that CP. The IOP converts the
list of chunks into a list of blocks. First, it checks the cache to transfer any data
that needs no disk I/O. Then it passes a list of block-transfer requests to the disk
thread, which sorts them into a disk schedule based on the disk layout. As the disk
works through the schedule, it sends data to (or fetches data from) the CP. Notice
that if many CPs are simultaneously requesting complementary chunks from the
file, as one would expect in a collective operation, their requests will dynamically
meet each other in the cache and the disk queue. (Note that it is important for the
CPs to be approximately synchronized in their file-access patterns, to avoid cache
thrashing.) The performance is often similar to that of a pure disk-directed 1/0
implementation [Nieuwejaar and Kotz 1997].

11. CONCLUSIONS

Our simulations show that disk-directed I/O avoided many of the pitfalls inherent
in the simple parallel file system (SPFS), such as cache thrashing, extraneous disk-
head movements, extraneous prefetches, excessive request-response traffic between
CP and IOP, inability to use all the disk parallelism, inability to use the disks’ own
caches, overhead for cache management, and memory-memory copies. Furthermore,
disk-directed I/O was able to schedule disk requests across the entire access pattern,
rather than across a smaller set of “current” requests. As a result, disk-directed
I/0 could provide consistent performance close to the limits of the disk hardware.
Indeed, it was in one case more than 18 times faster than the SPFS, despite the
fact that our SPFS implementation included simplifying assumptions that should
overestimate its performance. Finally, the performance of disk-directed I/O was
nearly independent of the distribution of data to CPs.

Our results also show that while two-phase I/O could substantially improve per-
formance over the simple parallel file system, it could also reduce performance.
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Furthermore, it was often unable to match the performance of disk-directed 1/0;,
largely because it did not overlap the I/O with the permutation.

As presented here, disk-directed I/O would be most valuable when making large,
collective transfers of data between multiple disks and multiple memories, whether
for loading input data, storing result data, or swapping data to a scratch file in an
out-of-core algorithm. Indeed, the data need not be contiguous [Kotz 1995a], and
the Galley results show that the interface need not be collective [Nieuwejaar and
Kotz 1997]. The concept of disk-directed I/O can also be extended to other envi-
ronments. Our Memput and Memget operations would be easily implemented on
a shared-memory machine with a block-transfer operation, for example. Although
our patterns focused on the transfer of 1-d and 2-d matrices, we expect to see
similar performance for higher-dimensional matrices and other regular structures.
Finally, there is potential to implement transfer requests that are more complex
than simple permutations, for example, selecting only a subset of records whose
data values match some criterion, or distributing records to CPs based on their
value, rather than file position.

Our results emphasize that simply layering a new interface on top of a simple
parallel file system will not suffice. For maximum performance the file-system in-
terface must allow CPs to make large, non-contiguous requests, and should support
collective-I/O operations. The file-system software (in particular, the TOP software)
must be redesigned to use mechanisms like disk-directed 1/O. Nonetheless, there
is still a place for caches. Irregular or dynamic access patterns involving small,
independent transfers and having substantial temporal or interprocess locality will
still benefit from a cache. The challenge, then, is to design systems that integrate
the two techniques smoothly. Despite not having explicit support for collective 1/O,
the Galley Parallel File System [Nieuwejaar and Kotz 1997] is one such system; its
disk-directed approach to serving complex requests from individual CPs leads to
excellent performance under many collective access patterns.

Future work
There are many directions for future work in this area:

—integrate with I/O-optimizing compilers [Cormen and Colvin 1994; Thakur et al.
1996],

—optimize concurrent disk-directed activities, and

—explore the possibility of “programmable” TOPs [Kotz and Nieuwejaar 1996].

Availability

The full simulator source code is available at
http://www.cs.dartmouth.edu/research/starfish/

The disk-model software can be found via the WWW at URL
http://www.cs.dartmouth.edu/cs_archive/diskmodel.html

Many of the references below are available at

http://www.cs.dartmouth.edu/pario.html
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