Dartmouth College

Dartmouth Digital Commons

Open Dartmouth: Published works by

Dartmouth faculty Faculty Work

3-8-2005

Secure Context-sensitive Authorization

Kazuhiro Minami
Dartmouth College

David Kotz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

b Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation

Minami, Kazuhiro and Kotz, David, "Secure Context-sensitive Authorization" (2005). Open Dartmouth:
Published works by Dartmouth faculty. 3463.

https://digitalcommons.dartmouth.edu/facoa/3463

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has
been accepted for inclusion in Open Dartmouth: Published works by Dartmouth faculty by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/3463?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F3463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Secure Context-sensitive Authorization

Kazuhiro Minami and David Kotz
Department of Computer Science, Dartmouth College
Hanover, NH, USA 03755
{minami, dfk} @cs.dartmouth.edu

Abstract

There is a recent trend toward rule-based authorization systems to achieve flexible security policies. Also, new sens-
ing technologies in pervasive computing make it possible to define context-sensitive rules, such as “allow database
access only to staff who are currently located in the main office” However, these rules, or the facts that are needed
to verify authority, often involve sensitive context information. This paper presents a secure context-sensitive autho-
rization system that protects confidential information in facts or rules. Furthermore, our system allows multiple hosts
in a distributed environment to perform the evaluation of an authorization query in a collaborative way; we do not
need a universally trusted central host that maintains all the context information. The core of our approach is to
decompose a proof for making an authorization decision into a set of sub-proofs produced on multiple different hosts,
while preserving the integrity and confidentiality policies of the mutually untrusted principals operating these hosts.
We prove the correctness of our algorithm.

1 Introduction

Pervasive computing leads to an increased integration between the real world and the computational world. Many
such applications adapt to the user’s context, that is, the user’s situation and environment. We consider a class of
applications that wish to consider a user’'s context when deciding whether to authorize a user’s access to important
physical or information resources. Such a context-sensitive authorization scheme is necessary when a mobile user
moves across multiple administrative domains where they are not registered in advance. Also, users interacting with
their environment need a non-intrusive way to access resources, and clues about their context may be useful input into
authorization policies for these resources.

There are several rule-based authorization syst8mk 9, 18] that allow a resource owner or a manager to define
authorization rules that refer to the context of the requester. These existing context-sensitive authorization systems
have a central server that collects context information, and evaluates policies to make authorization decisions on
behalf of a resource owner. A centralized solution assumes that all resource owners trust the server to make correct
decisions, and all users trust the server not to disclose private context information. In many realistic applications
of pervasive computing, however, the resources, users, and sources of context information are inherently distributed
among many organizations that do not necessarily trust each other. Resource owners may not trust the integrity of
context information produced by another domain, and context sensors may not trust others with the confidentiality
of data they provide about users. An authorization rule that refers to user location, for example, may raise concerns
about location privacyq, 10, 11, 18], because the information might allow others to infer their activities (e.g., a
secret business meeting). A policy that depends on the medical condition of patients must respect HIPAA rules about
the confidentiality of medical record4][To the best of our knowledge, no previous work addresses the issue of
information confidentiality in authorization rules.

This paper is a near-final pre-publication version of an article that will appear in the journal “Pervasive and Mobile Computing (PMC)”
published by Elsevier. The final published version as it appears in the journal (PDF and HTML) will be available only on an Elsevier site. A much
shorter version of the paper will appear at PerCom, March 8-12, 2005.

Query

‘ Query
Sub—proo
tree
Proof tree
Sub—proof
tree
Host A
Host C
(a) Centralized authorization server (b) Decentralized multiple authorization servers

Figure 1. Decentralized evaluation of an authorization query. The proof of a query is de-
composed into sub-proofs and produced on distributed multiple hosts. On the left, Host A
generates a whole proof on a centralized server. On the right, Host A, B, and C produce only a
subtree of the proof.

We propose a secure, distributed, context-sensitive rule-based authorization system. When a client requests access
to a resource, the resource owner constructs a logical statement (query) that, if proven TRUE, indicates that access
may be granted; otherwise access is denied. Although the resource’s host has a knowledge base containing rules
that represent authorization policies and facts about the users, it may not have all of the necessary information and
thus collaborates with other hosts to attempt to construct a proof for the query. Thus, rather than depending on a
central trusted server (Figutk), we decompose a proof into sub-proofs produced by multiple hosts (Figire
This collaboration is only possible if the querier can trust the integrity of other hosts (to provide correct facts and to
properly evaluate rules) and if the other hosts can trust the querier with confidential facts. We assume that these trust
relationships are defined Ipyincipals each of which represents a specific user or organization, and that each host is
associated with one principal (e.g., the owner of a PDA, or the manager of a server).

Our approach provides several benefits:

Confidentiality: Information used for making an authorization decision is protected according to access-control poli-
cies defined by the owner of that information.

Integrity: Proofs are evaluated by principals (hosts) that are trusted by the queriers.

Scalability: By distributing the knowledge base and proof construction we off-load work from a resource that may
have limited processing or communication capability.

In the following sections, we introduce our authorization rule language and how this language can define integrity
and confidentiality policies. Sectighdescribes our authorization system for the simpler case, where policies apply
only to facts. We describe the architecture of our system and introduce the concept of distributed processing for an
authorization query. We next describe our enforcement mechanism for confidentiality policies and give some key
algorithms for handling queries in a distributed way. We give an example application at the end of the section. In
Sectionb, we describe the general case that supports policies on rules as well, following the structure of the preceding
section. We describe the representation of a proof and the algorithm that can verify the integrity of the proof6Section
proves that our algorithm ensures the integrity and confidentiality policies of the principals constructing an arbitrary
proof tree. We discuss related work in SectibnSection8 covers some design issues and security properties in our
system, and Sectidhconcludes.

2 Background

In this section, we describe our language for defining authorization policies and introduce the concept of a proof
tree, which is constructed when evaluating an authorization query.

2.1 Authorization rule language

In rule-based authorization systems, authorization policies are represented as logical expressions. We express
access-control policies with Horn clauses since they are expressive enough to support the rules in existing rule-based
authorization systems$][4, 9]. We do not use a general first-order logic, which is not decidable in general. The syntax
of a Horn clause i$ < a; A as ... A a,, Which says that simple statements calédmsa; througha,, if all true,
imply b. The atomb is called theheadof the clause, and the atoms, ..., a,, the bodyof the clause. An atom is
usually used to state a fact. An atom is formed from a predicate symbol followed by a parenthesized list of variables
and constants. We can express the fact “Bob is in Hanovddcasion(Bob, Hanover), for example.

Example authorization rules. The teams responding to a large-scale disaster are coordinated by experts drawn
from multiple disciplines (fire, police, medical) and often multiple jurisdictions (city, state, federal). Increasingly, in-
cident commanders use software to assist with incident management and situational awareness. The National Incident
Management Systenl §] defines clear roles for the many participants in a large-scale response, so role-based access
control (RBAC) [L9] is a natural basis for protecting resources in an incident management system (IMS). Such an IMS
needs to dynamically link people, resources, and information from multiple domains, providing information to those
who need it in a time of crisis.

Suppose that an incident occurs in an airport. There is a surveillance camera image server managed by the airport,
and the chief of operation®@b) wishes to use the camera images to improve his awareness of the situation.2Figure
shows a set of rules that define the airport’s policy to grant access to the camera resource, which allows the local police
chief access to the images whenever he is in the airport, as determined by either his Wi-Fi network connection or by
the GPS tracking device in his radio. Rule 1 says that prindipaiust hold the roleperationchief to be granted,
and rule 2 defines the two conditions to hold that role. The first condition specifies the prerequigielicelehief
in a police department, and the second requires prindial be in the airport. Rules 3-5 specify how we derive the
location of principalP from the raw location information of a device.

2.2 Proof tree

To make an authorization decision, we must check whether a proof tree for tyeryt(P) can be constructed
with a given set of rules and facts. The proof tree consists of nodes that represent rules (or facts) and edges that
represent the unification that replaces an atom in the body of a rule in a parent node with the atoms in the body of a
rule or a fact in a child node. Every leaf node contains a fact that has no atom in its body.

Given the facts listed in Figurg we can construct the proof tree shown in Fig8tey unifying the query with the
first four rules, substituting variables as needed. We return to this example in Sekcamsl5.6to explain how we
construct this proof in a distributed fashion.

3 Security policies

Each principal definesonfidentiality policieso protect information in its knowledge base. It also definésgrity
policiesto specify whether it believes that evaluation results or rules received from other principals are correct.

3.1 Rule patterns

We first introduce the notion afule patterns which are mechanisms for expressing these security policies in
our security model. A rule pattern is just a regular Horn clause to be unified with a rule or a fact in the knowl-
edge base. We use a rule pattern to specify to which rules and facts a given policy is applied, because it is
infeasible to specify a policy on each instance of a rule or a fact. A rule pattern is associated with a set of
rules or facts that match it througimification a pattern-matching process that makes a rule pattern and an actual

Rules:

grant(P) <« role(P,operationchief) Q)
role(P, operationchiefy — roleIn(P, policechief police.depy A location(P, airport) 2
location(P,L) « owner(P, D) Alocation(D, L) 3
location(D,L) «— wifi(D,A)Nin(A,L) (4)
location(D,L) «— gps(D,X,Y) AcloseTo(X,Y,L) (5)
Facts:
roleIn(bob, police_chief police.dep). Bob is chief of the local police department. (6)
owner(bob, pdalb) Bob owns device pdal5 @)
wi fi(pdalb, ap39). pdal5 is associated with access point ap39. (8)
in(ap39, airport). Access point ap39 is at the airport. 9)

Figure 2. Sample set of rules. We use uppercase for variables and lowercase for constants
and names.

?grant(bob)

grant(bob) « role(bob, operation_chief)

role(bob, operation_chief) «— roleIn(bob, police_chief, police_dept) A location(bob, airport)

roleIn(bob, police_chief, police_dept) location(bob, airport) < owner(bob, pdal5) A location(pdal’, airport)
owner(bob, pdal5) location(pdalb, airport) «— wi fi(pdalb, ap39) A in(ap39, airport)
wi fi(pdalb, ap39) in(ap39, airport)

Figure 3. Example proof tree based on the rules in Figure 2.

rule in the knowledge base identical by instantiating variables in the rule pattern. For example, the rule pattern
location(bob, X) is matched with the fadiocation(bob, hanover) in the knowledge base, because the variable
can be instantiated thanover. It does not match with the faébcation(alice, hanover), however. The rule pattern
role(X,Y) « occupation(X,Y) A location(X, hospital) can be matched with the rulele(P, physician) «—
occupation(P, physician) A location(P, hospital) by instantiatingX to P andY” to physician.

A principal may define as many security policies as it sees fit to define. Each security (pplityis represented
as a rule patternp and a set of trusted principals

3.2 Integrity policies

Integrity policies express trust in the correctness of rules and facts. Our definition is based on the information flow
theory [B] whose focus is confidence on the accuracy of information rather than alternation of information. When
a principalp; defines the integrity policyrp, t) it means thap; trusts those principals ity which we often denote
trust;(rp), to be correct in whatever rules or facts match patternWe use subscriptin the trust policy to denote
which principal defines the policy.

The integrity of a fact means that the boolean value representing a fact is correct. For example, if principal
includes principap; initstrusty(loc(P, X)), then principap, believes thap,'s evaluation (true or false) of a location
query of the form?loc(P, X) (e.q.,?loc(bob, hanover)) is correct. On the other hand, the integrity of a rule means
that the rule itself is able to correctly derive a new fact. For example, if pringipaicludes principap; in its rule
patterntrusty(loc(P, X) — WiFi(P,Y)Nin(Y, X)), thenp, believes thap,'s ruleloc(bob, X) — WiFi(bob, Y)A
(Y, X) is a correct rule to resolve the query of the fotine(bob, hanover). In other words, principgb, believes
that the queryoc(bob, hanover) is replaced with two sub-queri@§ViFi(bob, Y') and?in(Y, hanover). Principalpg
can verify that principap, applied the rule correctly to derive the conclusion by checking the proof as we describe in
Section5.1

Notice that trust on a fact is a stronger notion than trust on a rule. Trust on a fact implicitly trusts the rules used to
derive that fact. For example, the trust on the rule pattet(iX, Y) implicitly indicates trust of any rule whose head
can be unified withoc(X,Y).

3.3 Confidentiality policies

Confidentiality policies protect facts and rules in a principal’s knowledge base. A fact must be protected if it
contains confidential information. A rule must be protected if confidential information may be inferred from reading
the rule. For example, the rulg-ant(P) < loc(bob, sudikoff) says that any principaP is granted access whénb
is at the location osudikoff building. If a request is granted, the requester may infer that bob is at Sudikoff, which
might not be public knowledge.

When a principap; defines the confidentiality policyrp, ¢), it means thap;, trusts those principals ity which we
often refer to as the access control tist; (rp), with facts or rules matching rule patterp. Principalp, only responds
to a queryq from principalp, if there exists a rule patternrp that can be unified with the queryand principalp;
belongs toacly(rp). For example, suppose that principal defines the policy:cly(location(bob, L)) = {p1,p2};
principal py responds to a queriocation(bob, hanover) from principalp;, because rule pattedacation(bob, L)
matches withocation(bob, hanover).

3.4 Assumptions

In this paper we make a few assumptions to maintain our focus on the confidentiality and integrity issues in dis-
tributed context-sensitive authorization systems. First, the integrity and confidentiality policies of each principal are
public knowledge. Second, a public-key infrastructure is available and every principal can obtain the public key of
other participants, so that they can establish secure channels with a session key and verify the authenticity of messages
with digital signatures. Third, we assume that there is a directory service that knows which principal handles what
types of queries.

For purposes of simplifying our explanation, we consider the basic case that supports security policies only on facts
first in Sectio4, and then the general case that supports security policies on facts and rules in Section

Host

Logical Host

: Query
Authorization -
Request uer : Host
q% Service Query : Host

Host
\ Howt

Figure 4. Architectural overview. The hosts enclosed in the dotted lines make an authorization
decision in a collaborative way.

4 Authorization for the basic case

In this section, we describe our authorization system for the basic case that supports security policies only on facts.
4.1 Architecture

With no central server to make authorization decisions, we use multiple hosts that are administered by different
principals. Without loss of generality, we assume that eachiiestdministered by a different principa), although
in many realistic environments there may be principals that own or manage many hosts. Each host stores a local
copy of its principal’s integrity and confidentiality policies. Each host provides an interface for handling queries from
remote hosts, and may ask other hosts to resolve any subqueries necessary. 14, Bigiser sends a request to the
server that provides some service, and the server issues an authorization query to a host it chooses in order to make a
granting decision.

The structure of a host is shown in FiglseThe query handler handles queries from other hosts and enforces the
local confidentiality policies. The inference engine constructs a proof tree for a given query based on the rules and facts
in the local knowledge base. If some query cannot be evaluated locally, the inference engine issues a remote query to
another host through the query issuer. The query issuer refers to its local integrity policies to choose a principal whose
evaluation of the query is trusted; the integrity policies serve as a directory service to choose a principal to which it
sends a query. The query issuer receives a response and checks its integrity based on the integrity policies. The event
handler converts events that contain new context information into corresponding facts and updates the knowledge base;
these events may be delivered by a context-dissemination service such agJsolar |

4.2 Proof object

The response to a query igpeoof object represented &g,., n, (value)k,), wherep,. is a receiver principal. The
proof object contains a noneethat is attached with the query to prevent replay attacks by an adversary that is capable
of intercepting the encrypted messages between principals. We omit the field of ammontee proof object for
brevity in the following discussion. Thealue is a query result, which is a boolean valuERUE or FALSB, a
conjunction of boolean values, or the vaR&JECT The valueREJECTis used when a given query is not handled
because the querier principal does not satisfy the handler principal’s confidentiality policies. Otherwise, the handler
principal constructs a proof tree locally, then includes the query’s reBRIE or FALSE in the proof object. (We
name the returned objectpsoof objectbecause, in the general case in SecHpit contains a proof tree that shows
how the query result is derived.) The receiver principamight not be the principal that issues quergwe explain

Query Query

Query I ; Query
nference engine)
Proof tree handler & issuer Proof tree

Confidentiality { Knowledge base } Integrity

policies policies

add/delete facts

Event handler

Context events

Figure 5. Structure of a host.

why, below), and, therefore, the name of the receiver principal needs to be included in the proof object, so that the
receiver principal can decrypt an encrypted value. The value must be encrypted with receiver prirejpablic key

K, to enforce the confidentiality policies of the publisher principal. The public key encryption is performed to prevent
intermediate principals from reading the value. Furthermore, the whole proof object is transmitted via a secure channel
established with a session key between a querier and a handler principal to prevent an eavesdropper from reading the
content of the proof object. The digital signature of a proof signed by a handler principal ensareputabilityof

the handler; that is, the handler principal is not able to falsely deny later that it sent the proof.

A principal py that handles query, might issue subqueries to other principals, and the returned proofs from those
principals might contain encrypted query results that princigatannot decrypt. Therefore, the quepys result
depends on the encrypted values in the proofs for the subqueriestisastues, and principaly returns a proof for
gueryqo that contains the query results for the subqueries as follows. Suppose that prigdgsles subquerieg
fori =0,...,n—1, and receives severl; = (p,(;), (value;)k, ,) wherep, ;) is the receiver principal of the proof,
value; is the queryy;’s result, andk, ;) is principalp, ;s public key. The queryy’s result isTRUEonly if py can
verify thatvalue; is TRUEfor all 7 in the proof. If anypf, ;) (for which r(i) = 0) is FALSE py returns a simple proof
(pr, (FALSB g,). Otherwise, if there are some subproofs thatannot decrypt (becauséi) # 0), then principabg
returns the proofp,., (IL; (pr(;), (value;) i, ;))) k,) for all (i) # 0, as a response to quegy. The proof contains the
concatenated subproofs encrypted with public k&y The query result of the proof IBRUEIf the conjunction of all
thevalue; (i.e., A;(value;)) is TRUE

4.3 Decomposition of a proof tree

When a querier issues a query to a principal that the querier trusts with the integrity of evaluating the query, the
principal that handles the query only returns a proof that contains the query’s fERUE(FALSE or REJECT),
and the proof tree that derives the query’s result does not have to be disclosed to the querier. If multiple principals
are involved in processing a query, no single principal obtains all the rules and facts in the proof tree of the original
query. Instead, the proof tree for the query is decomposed into mustifsizeevaluated by different principals in
a distributed environment. In other words, there is no single principal that maintains a whole proof; instead, each
principal maintains a subproof of the whole proof.

Figure 6 shows that the proof tree for quegy is constructed by principaly, p1, andp, in a distributed way.
Principal pg receives queryj, and issues subquery to principalp; to construct a proof treg,, and principalp;
similarly issues querys to principalps to construct a proof tre@;. The facts or rules in the proof tre&s, 77, and
T, are not disclosed to other principals; the result of evaluating each proof tree is returned to the querier as a boolean
value or conjunction of encrypted boolean values.

‘ Query go

Principal pg $

Proof tree T
0 Node ng

Q1

Proof tree T}
ny Q

q2

P2

Proof tree T,

Figure 6. Decomposed proof tree. Principals pg,p1,and ps construct a proof tree for query ¢o
in a distributed way. Nodes ny and n; are leaf nodes of proof trees T, and 77 respectively.
Principal pg that handles query ¢q issues query ¢; to principal p; to obtain the fact in node ny,
and principal p; similarly issues query ¢ to principal ps.

Example. Figure 7 shows the proofs in the evaluation of the quéwrant(bob), involving pi, pa and ps.
The query ?grant(bob) from principal py to p; is decomposed into two sub-queri@sole(bob, doctor) and
?location(bob, hospital) according to the ruleule; = grant(X) < role(X, doctor) A location(X, hospital), and
those subqueries are handled by princigandps respectively. Principal, has the matching faeble(bob, doctor)

in its knowledge base and returns the prgpf, TRUE) to principal p;. Principal ps also returns the proof
(p1, TRUE). Principalp; trusts the integrity of the proofs from, andps according to its integrity policies, and
internally constructs the proof tree that contains the rulk:; as a root node and the faatsle(bob, doctor) and
location(bob, hospital) as its children nodes. Principa concludes that the statememtunt(bob) is true and returns
the proof(py, TRUE).

4.4 Enforcement of confidentiality policies

The enforcement of each principal’s confidentiality policies is different from that in many existing authorization
systems, which check the privileges of a requester principal before divulging information directly to the requester. In
our system, a principal that publishes a proof chooses the receiver of the proof from a list of upstream principals in the
whole proof tree. The principal may make that choice because its confidentiality policy does not allow it to divulge the
information to the querier, but may allow the information to be released to another principal further up the tree. The
encrypted result will become part of the querier’s response up the tree; eventually the receiver principal may decrypt
the result and compute the conjunction to see whether the tteeis

We formally define the ordered list of upstream principals as follows. We say that a prireppadents proof-tree
node when a rule or a fact contained in that node is published by that principal. We denote the principal that represents
noden asrep(n), and the ordered list of principals that represent a corresponding ordered list of snasteg(s).
Suppose that principal represents a nodein a proof tree. We denote the ordered list of nodes on the path from the
root of the proof tree tm, excludingn, asupstream_nodes(n). That is, the nodes are ordered from the root node
downward.

The list of upstream principals feris defined asep(upstream_nodes(n)), which we denote ageceivers(p). In

Security policies

po [o trust(grant(P)) = {p1}
|
(po, TRUE) | ?grant(bob)
| Knowledge base / Security policies
: Coruley :
i L trust(role(P, doctor)) = {ps}
T trust(location(P, L)) = {ps}
| I
(p1,TRUE) ! \ (p1, TRUE)
?role(bob, doctor) 2location(bob, hospital)

: Knowledge base K‘pgwlgdggbasg S

‘i role(bob, doctor) : locatzon(bobhoep?fal)

rule; = grant(P) < role(P, doctor) A location(P, hospital)

Figure 7. Example of distributed query processing. The solid arrows are labeled with queries
and the dashed arrows are labeled with returned proofs. The rounded rectangles with dotted
lines represent the knowledge bases and security policies of those principals respectively. The
definition of rule; is enclosed in the rectangle at the bottom of the figure.

q2

Pp3

pfy = (po, (values))

d0 Q1
Po p1 b2
ph = (po, ((pfs)) o) ph = (p1, ((pfs) (Pf)) k)
a3

P4

pfi = (p1, (values),)

Figure 8. Enforcement of confidentiality policies. Principal po'S query qq is handled by principals

p1,D2,p3, and py in a distributed way. Principal p; handles query ¢;_, and returns the proof pf;,
for i =1to 4.

Figure8, principalpy’s issuing queryy, causes principalg; andps to issue subquerieg, g2 andgs. Principalps’s
list receivers(ps) is < po, p1,p2 >, for example.

When a publisher principal chooses a receiver from the-listivers(p), the receiver must satisfy the following
two conditions. First, it must satisfy the publisher’s confidentiality policies. For example, suppose that pgncipal
choose®; as the receiver of querg's result. Principap; must satisfyp,'s confidentiality policies for querys; that
is, p4 must have confidentiality policyp, t) where rule patternp matches query; and principalp, belongs to a set
of principalst.

Second, the receiver principal must satisfy the constraints due to recursive encryption of a proof at each princi-
pal. A principal that handles a query might issue subqueries to other principals. If that principal cannot decrypt the
query results in those subproofs, it includes the subproofs into its proof and encrypts them with the public key of a
receiver principal. This recursive encryption is necessary to prevent a untrusted intermediate principal on the path
towards the receiver from knowing the query result by decrypting some subproof whose query HesuBEs Be-
cause such embedded encrypted subproofs are encrypted recursively by intermediate principals until they reach their
receiving principals, the intermediate principals have to make sure that their encryption on embedded subproofs are
decrypted when the proof reaches the receiving principals of the subproofs. Otherwise, the embedded subproofs pass
the receiving principals without being decrypted, and the proof fails.

In Figure8, principalps choosey, as the receiver of progif; = (po, (values)k,) Wherevalues is querygs’s
result andK, is py's public key, andp, choose, as the receiver of progif,. Principalp, embeds those proofs
from p3 andp, into proof pf,, becausep, cannot decrypt those proofs. Suppose that both pringipand p; in
receivers(ps) satisfy the first condition; they satisfy’s confidentiality policies for query;. Principalps must
choosep, as the receiver to satisfy the second condition. Because pringigcrypts and evaluates the prauf,
p1 only embed®f; into proofpf;, which is decrypted by principab, if the evaluation opf, is TRUE (Otherwise p,
drops the proopf; and return a proof that containd=ALSEvalue.) If principalp, choosegy as the receiver of proof
pf, instead, the proabf,, which is embedded in progf,, is forwarded tay, without being decrypted by, and the
proof is not usable by.

In general, a proof contains any number of encrypted subproofs. Suppose that priisifisi receivers(p;) is
< po, - --,Pi—1 >, andp; returns proopf; that contains subproofs; for j = 0,...,n — 1 to principalpy. Letp,
be the receiver principal for progf., andindex(p, s) be the function that returnss index in the ordered list. The
second condition for selecting a receiver is stated as follows.

Vj ((index(py(;), receivers(p;)) < index(pg, receivers(p;))) V (r(j) = 1))

If there is more than one principal that satisfies the above two conditions, pripgigdlooses the principal of the
minimum index (closest to the root). This guideline is important not to narrow the choices of the receivers made
by the upstream principals. Note that the proof fails if the path to the root does not permit these decryptions and
validations; the failure results because the integrity and confidentiality policies of the principals involved will not
allow the necessary information sharing. We, therefore, anticipate that an addition of rules or policies by principals
would increase the false negative rate of authorization decisions.

10

| String query |
| Principal[] receivers |
Hashtable i_policies '

|
L - T - - — |

Querier Handler
Proof

Figure 9. Query interface.

4.5 Algorithms

Each host (run by some principal) provides an interfae@DLE REMOTEQUERY for handling a query from a
remote host. It takes as parameters a query stridist of upstream principaleceiversdefined in Sectiod.4, and
a querier principal’s integrity policiespolicies, as shown in Figur®. The functionHANDLE REMOTEQUERY calls
the functionGENERATEPROOFt0 obtain a proof.

Figure10 shows the algorithm for the functiaBENERATEPROOF, run on principalp;’s host to build a proof while
enforcing confidentiality policies of the handler principal. The algorithm handles the simpler case that a proof from
a remote principal contains a query result (not concatenated subproofs). We describe how to handle concatenated
subproofs in Sectiob.5. The function takes several parameters: principathat issues a query, principg] that
handles a query, a query strigga list of upstream principaleeceivers for py (i.e., receivers(p1)), po's integrity
policiesi_policiesq, p1's integrity policiesi_policiesy, p1's confidentiality policies:_policies;, andp;’s knowledge
baseK B;. If pg is an initial querier, it includes itself into the listceivers.

Lines 2—-3 check whether there is any principal in theiligteivers that satisfies the handler principal's confi-
dentiality policies. The principals that belong to the intersectioreoivers and the union of the access-control lists
in p1’s confidentiality policies for query are eligible to receive a proof from . We treat the ordered listceivers
as a set in line 2, and denote the result set. d§there is no such principal (i.e., the sets empty), line 4 returns a
proof with aREJECTvalue to querier principal.

Line 5 sets the receiver principal of a proof in the case that the query result in the proof is obtained locally. The
chosen receiver is the principal that belongs todisind has the minimum index in the ordered fisteivers. We
choose that principal witminIndex(s, receivers) in line 5.

Line 7 checks whether the handler principalsatisfies the querign’s integrity policies (we use the symbdl to
denote “such as” in our algorithm for brevity). If not, line 8 returns a proof wi\BSEvalue to principap,.. Line 9
checks whether query matches facyf in p;’s knowledge base. If so, line 10 returns a proof witiRUE value to
principal p,..

Lines 11-19 cover the case that quenyatches the head of rutein p,’s knowledge base. Line 12 unifies query
and ruler = A — By,..., By, resulting in the instantiated ru#’ — B, ..., B],. Lines 13-14 obtain subproofs for
the subquerie®], ..., B/, iteratively. If principalp; can decrypt all the values in the subproofs, and all the subproofs
contain aTRUE value, then line 16 returns a proof withTRUE value to principalp,.. Line 17 checks whether the
subproofs decrypted by, contain aTRUE value, and if so, line 18 checks whether there is some pringipahat
satisfies the constraint due to the recursive encryption we describe in Séditmat is,p,'s index in the ordered list
receivers must be greater than or equal to the indexy,ofy in receivers if (i) # 1. If there is such a principad,,
line 19 returns a proof containing the subproofs whose values could not be decrypteavltly principal p, as the
recipient.

When lines 7-19 fail to construct a proof that derives qugrmgur algorithm does not return a proof that contains
FALSEimmediately. Instead, it tries to obtain a proof from a remote principal in lines 21-25. Line 21 checks whether
there is any principap; that satisfiep,'s integrity policies for query;. If that holds true, line 22 appengs into the
ordered listreceivers, and line 23 calls the functiorsSUEREMOTEQUERY. Line 24 returns the returned proof. If
line 21 fails to find such a principaj, then line 25 returns a proof withBALSEvalue.

11

GENERATEPROORpy, p1, ¢, receivers, i_policiesy, i_policiesy , c_policies, K By)

1

2
3
4
5
6
7
8

©

10
11
12
13
14

15
16
17
18

19
20
21
22

24
25

> Check whether there is any principalibceivers that satisfiep,’s confidentiality policies.
s «— receivers N (|, t;) for all policies(rp;, t;) € c_policies; whererp; matches;
if s = 01> if setsis empty.
then return (po, (REJECT)k,)
pr < minIndex (s, receivers)
> Check whether principal; satisfies queriep,’s integrity policies.
if =(3 policy p = (rp,t) | ((p € i_policiesy) A (rp matches)) A (py € t)))
then return (p,, (FALSB k)
if 3factf | ((f € KB1) A (f matchesy))
then return (p,., (TRUB) k)
elseif3ruler = A «— By,...,B, | ((r € KBy) A (A matches)))
then unify g andA < By, ..., By, resulting inA’ — B1,..., B},
fori—1lton
do pf, « GENERATEPROOH1, p1, B}, receivers, i_policiesy ,i_policiesy, c_policiesy, K By)
wherepf; = (p,.(;), (value;)k, ;)), andr(i) is a receiver principal off;
if Vi ((pfi = (p1, (value;)k,)) A (value; = TRUB)
then return (p,, (TRUE k)
elseifVi ((pf; = (pr(iy, (valuei)k, ,)) A (((r(7) # 1) vV ((r(7) = 1) A (value; = TRUE))))
thenif 3 p,. | (Vi (((pr € 5) A (index(p, (), receivers) < index(p,, receivers)) A (r(i) # 1))
V(r(i) = 1))
then return (p,, (IT; pf;) k)
for all i wherepf; = (p,(s), (valuei)r,) A (r(i) # 1)
> If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
if 3 principalp; (3 policy p = (rp, t) ((p € i-policiesi) A (rp matchesy) A (p; € t)))
then appendp; to receivers
proof < ISSUEREMOTEQUERY(py, g, receivers, i_policiesy)
return proof
else return(p,, (FALSBk.,)

Figure 10. Algorithm for generating a proof.

12

|
I owner(bob, pdal5) i location(D, L) « in(A,L) Nwifi(D,A)
in(ap39, airport)

acl(location(D, L)) = {ps}

! acl(owner(P, D)) = {ps} :7 o

wi fi(pdals, ap39)
acl(wifi(D, L)) = {ps}

Figure 11. Example of an emergency response system. Principal po is a first responder whose
role is “operation _chief”. Principal p; represents a surveillance camera image server. Principal

p2 is the role membership server of an incident management system (IMS). Principal ps3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled

with a query and a returned proof. The query is shown above the dashed line; the proof is
shown below the line. Each principal’s rules, facts and confidentiality policies are shown in a
dashed rectangle.

4.6 Example application

Consider again our initial example of an incident management system (IMS) shown in Bjgareentralized
server would produce the proof tree in FigeFigure1l shows how uselbob (principal pg) requests images from
the surveillance camera image server managed by the airport (pripgipal Bob’s request is handled by multiple
principalsp1, po, - . ., p7. In Figurell, every principal issues queries to the principals that satisfy its integrity policies,
and every querier except for principal satisfies the confidentiality policies of the principals to which it sends the
queries. Principap, does not satisfy,’s confidentiality policies for querylocation(bob, airport), becausep,
is temporarily assigned to manage the role server for the incident, and thus princigads not establish a long-
term trust relation with principap,. Fortunately,p;, that runs the surveillance camera image server satisfies
confidentiality policies, principal, encrypts the query result wigh’s public key, and principgb, embedg,’s proof
into its own proof, then returns it to,. Principalp; decrypts the query result in the proof frgmg, but it is not aware
of the fact that the query result is created by princjpal

13

5 Authorization for the general case

In this section, we extend our authorization scheme so that it supports security policies on rules as well as on
facts. A proof contains a proof tree that describes the derivation of the query’s result if the evaluation of a query
is true, instead of simply the resulERUE in order to satisfy a querier principal’s integrity policies. This situation
occurs when the querier principal does not trust the integrity of the query result from the handler principal, but trusts
handler’s rule that is used to decompose the query into subqueries. We describe the integrity of a proof tree, the
representation of the proof that contains a proof tree, and the enforcement mechanisms for confidentiality and integrity
policies respectively.

5.1 Integrity of a proof tree

A principal trusts the integrity of a proof tree (that is, believes its result) for a query if it is consistent with its
integrity policies. We formally define the integrity of a proof tree from the viewpoint of an initial querier pringjpal
inductively as follows. Suppose that principglissues a query to principalp; .

Base case (single-node tree)f the proof from principalp; contains a query’s result, and principapy has an in-
tegrity policy (rp, t) such that rule patterrp matches query andp; belongs to the set of principalsthenp,
trusts the results of the proof tree.

Induction step: If the proof fromp; contains a proof tree whose root node represents arfulee head of rule:
matches query, po has an integrity policyrp,) such that rule patterrp matches- andp; belongs to the set
of principalst, andp, trusts the integrity of the subproof trees under the root node representtmenp, trusts
the proof tree.

5.2 Representation of a proof

We represent aroof using nested parentheses based on the grammar in Higufeproof contains five fields: a
sender principal, a receiver principal, a query, a nonce, and a proof tree optionally encrypted for a receiver. The sender
is the principal that publishes a proof, and the receiver is the intended receiver of the proof. The query is a query string
for which the proof is constructed, the nonce is a random number chosen by a querier principal, and the proof tree
represents how the evaluation result for the query is derived.

The hierarchical structure of a proof tree is built by embedding subproofs into a proof recursively. That is, the
proof contains a proof tree that consists of a root node (representing a rule) of the proof tree and the subproofs that
contain the subproof trees under the root node. Therefore, each node in a proof tree described 12 Sdwioa
corresponding proof (or an embedded subproof) that contains it as the root node of its proof tree. If a proof contains a
single-node proof tree, it only contains a query result or a set of proofs whose query results are encrypted as described
in Section4.4. The digital signature of a proof is attached with the proof so that a receiver principal can check its
authenticity. It also ensure®n-reputabilityof the sender principal. When a proof tree is a single-node one, the field
for a proof tree contains a query result (value). If a query result depends on encrypted values, it is represented as a set
of value pairs that consist of a receiver principal and an encrypted query result, as we describe indSction

The first four fields in a proof are necessary to verify the integrity of its proof tree. The sender’s identity is necessary
to check the authenticity of a proof by checking a digital signature attached with the proof. To verify a proof, one must
verify the integrity of all the embedded subproofs in that proof, which are published by different principals. Therefore,
every principal that publishes the subproof needs to attach a digital signature with it. We omit the digital signature of
a proof from our syntax in Figur&2 for brevity. The receiver’s identity is necessary when a proof tree is encrypted by
the receiver’s public key as we discuss in Secloh The nonce is necessary to prevent a malicious principal from
reusing a proof for an identical query at an earlier time.

When we verify the integrity of the query result in a proof, we check the principal that signs the proof. However,
when we also verify the integrity of a rule in a proof, we check the principal that defines that rule. That principal may
be different from the one that applies the rule to handle a query. Therefore, the rule is paired with the principal that
defines it so that the principal that receives a proof can obtain the digitally signed certificate of that rule separately to
check the integrity of the rule.

14

< proofs >

< proof >

< proof tree >
< sender >

< receiver >
< query >

< atom >

< predicate >
< args >
<arg >

< nonce >

< rule_cert >
< rule >

< head >

< body >

< signer >

< value_pairs >
< value_pair >
< wvalue >

< identifier >
< string >

< character >
< number >

< digit >

Figure 12. Grammar for a proof.
publishing proof, and optionally encrypts the

< proof > (< proof >) %
‘(" < sender >, < receiver >, < query >, < nonce >, < proof tree > ")’
‘(" <rule_cert >,'(" <proofs>"')") | <proofs> | <waluepairs > | <value >

< identifier >

< identifier >

? < atom >

< predicate > ‘(" < args >")

< identi frer >
<arg>(,<arg>)x*

< identifier >

< number >

‘(" < rule >, < signer >")’

< head >+ < body >

< atom >

< atom > (A < atom >) *

< identifier >

< value_pair > (< value_pair >) %
‘(" < receiver >, < value > ")’
‘TRUE’ |'FALSE' |'REJECT’
< string >

< string >< character > | < character >
al...|z|A|...|Z]0]1|2|3|4]|5]6]7|8|9
< number >< digit > | < digit >
0]1]2/3|4/5|6]7|8|9

digital signatures and encryptions from our syntax.

15

A sender principal attaches a digital signature with its
proof treefield of a proof. We, however, omit the

Security policies

: trust(grant(P) < role(P, doctor) A location(P, hospital)) = {p1}

Po trust(role(P,doctor)) = {p2}
3 rustllocation(P L) = dpsh
|

proofi = (p1, po, Tgrant(bob), (ruley, (proofs, proofs))) i ?grant(bob)
|
LN Knowledgebase ...
P i ruley; = grant(P) — role(P, doctor) A location(P, hospital)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T

Knowledge base

777777 role(bob, doctor) D3 """1_-loca,t7'0n(bob, hosp’i,tal)}

Figure 13. Construction of a proof tree. The solid arrows are labeled with queries and the
dashed arrows are labeled with returned proof trees. The rounded rectangles with dotted lines

represent the knowledge bases or security policies of those principals respectively. We omit

nonce and digital signatures in the proofs for brevity.

Example. The example in Figur&3is a modification of Figur&. Principalp, has different integrity policies, and,
as a result, principgd, returns a proof that contains a proof tree. Principatoes not trust the integrity of; to
evaluate the querygrant(bob), but does trust the integrity efule;. Principalp; constructs a proof that consists of
the rulerule; as a root node and the sub-propfeo fo andproofs as leaf nodes and returns it to principgl The
proof tree constructed by principa] is trusted by principab, because principaly trustsrule; in principal p; and
the factsrole(bob, doctor) andlocation(bob, hospital) in principalsp, andps respectively, according to its integrity
policies.

5.3 Decomposition of proof trees.

In the general case, a response to a query is a proof that contains a proof tree that satisfies the integrity policies of
a querier. If the integrity of the principal that handles a query is trusted by the querier, it only returns a single-node
proof tree that contains a query result. If there are such principals participating in evaluating a query, the whole proof
tree is decomposed into several subtrees and is evaluated by those principals in a distributed way. The facts and rules
used for evaluating a subtree do not have to be disclosed to a querier principal.

In Figurel4, principalspg, p1, - - -, p1o are the participants in evaluating a query, and each arrow shows how a proof
tree flows from one principal to another. We show only the fields for a sender and a receiver principals for brevity,
omitting other fields. The dashed lines show which principal’s integrity policies are applied to the principals enclosed
in the lines. Because principg} trusts principaps andps in terms of the integrity of the given queries; it is possible
to evaluate the query at, po, andps rather than collecting all the rules and facte@tPrincipalsp, andps construct
a proof tree locally based on their own integrity policies, and return only a single-node proof tree that contains a query
result. Therefore, principal, does not know how the query results frgmandps are derived.

5.4 Enforcement of confidentiality policies

We apply the same mechanism for enforcing confidentiality policies in Sedtibrirhe only difference is that a
receiver principal must be an upstream principal that evaluates a proof subtree. We, therefore, define a set of principals

16

\‘x\ po’s integrity policies

(p1, pos ((p&vlzl)f(l;-i-]]l»

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

, ’(1’7~ P3) (Pro,p2) N
. N
.

ps’s integrity policies po’s integrity policies

Figure 14. Example of subproofs. Principals Do, - - -, P10 are the participants in evaluating a
guery. Each arrow shows how a proof tree flows from one principal to another. Each arrow is
labeled with the pair of a sender and a receiver principals in a proof, omitting the other fields of

the proof for brevity. The dashed lines show which principal’s integrity policies are applied to

the principals enclosed in the lines. The principals po, p2, and ps that represent the root node
of the nested subtrees are enclosed in the thick rectangles.

receivers(p) whose members are eligible to receive princigalproof as follows.

Suppose that in a proof tree there is a sequence of nages, . . ., n, on the path from the root, to noden; in
the proof tree, and principal represents node; and handles quenry_, from p;_; for i = 1 to k. Principalp; where
1 < k belongs to the seteceivers(py,) if it satisfies either of the following two conditions.

e Principalp; is pg.

e Principalp; belongs tareceivers(py), p; has an integrity policyrp, t) such that rule patterrp matches query
gi—1 andp; belongs to the set of principatsand there is no other principg} (wherel < j < 4), that satisfies
this condition.

Notice that our new definition does not change the definitioreadivers(p) in Sectiord.4, because every principal
issues a query to a principal that it trusts in terms of the integrity of evaluating the query. That is, if a querier principal
pi—1 in receivers(p) issues query;_1 to p;, p; belongs toreceivers(p) as well becausg,; satisfies the second
condition above. In other words, all the upstream principajsfoélong to the seteceivers(p).

5.5 Algorithms

Each host provides the same remote interface for handling a remote query. We describe the extended version of the
function GENERATEPROOF, and then introduce the functi@HECKPROOHNTEGRITY that checks the integrity of a
proof tree that contains rules as intermediate nodes.

Algorithm for constructing a proof. In Figurel5, we extend the algorithm in Figufe) to support security policies
on rules. There are a few modifications as follows. First, a proof has additional fields such as a sender principal, a
query string, and a nonce according to the representation of a proof in SB@idNe use the parameter namers
instead ofreceivers for compactness.

Second, the algorithm handles a proof from a remote principal that contains multiple subproofs. The query result
of the proof is the conjunction of the query results of all the embedded subproofs. The query réRuE$ all

17

the query results of the embedded subproofs haV®EE value; otherwise, it iSALSE Lines 15-19 construct a
proof from the prooff, for i« = 1 to n obtained by calling the functioeENERETHEPROOFIN line 14. Each proopf,
contains either a query result or multiple subproofs. Therefore, the query result of the proof is the conjunction of the
query results of proofpf; for i = 1 to n, and, if proofpf;, contains multiple subproofs, its query result is represented
as the conjunction of those embedded subproofs. Line 15 checks whether the handler grincgraread all the
query results of proopf;, and all the query results areT&RUE value. The query result of the proof TRUEIf the

proof contains & RUEvalue or all the embedded subproofs contaiffRtEvalue. If the condition in line 15 holds

true, line 16 returns a proof withERUEvalue. Line 17 handles the case that princjpatannot decrypt all the query
results in the proofpf; for i = 1 to n and all the decrypted query results hav€RUE value. If so, line 19 checks
whether there is a principal.. that satisfies the constraint due to recursive encryption. We need to consider all the
receiver principals of the embedded subproofs as well. If there exist such pripgiphhe 19 returns a proof that
contains the subproofs whose query results cannot be decrypted by principal

Third, we handle the case that principal is not trusted by, in terms of the evaluation of a query, but's
rule, which matches the query, is trusted by principal in lines 21-27. Line 21 checks whether there is a rule
R= A« By A...NAB,inp;’s knowledge base whose heddmatches query and querier principap, satisfies
p1’s confidentiality policies for ruleR. If there is such ruleR, line 22 checks whether querigg has an integrity
policy p = (rp/,t’) that trusts the integrity g,’s rule R. Line 23 unifies query and ruleR resultingR’ = A’ —
Bi,...,B.. Lines 24-25 obtain the proofs for the atofB$, . .., B, iteratively. Line 26 checks whether there is a
receiver principap,- in the set of principalscvrs that satisfies the constraints due to recursive encryption described
in Section4.4. If that holds true, we return the proof that contains rileas the root node of the proof tree, and the
proofs forB1, ..., B, as the subproofs under the root node. The proof tree must contain the proofs whose proof trees
are decrypted by, to satisfy the receiver principal’s integrity policies.

Fourth, when principap, tries to construct a proof by issuing a remote query, we need to check whether querier
principalpg trusts the integrity of the query result from handler principalLine 30 checks that condition by checking
whetherp, belongs ta-curs, because line 8 appengsto rcurs if the condition holds. If that holds true, line 32 issues
a remote query withp;’s integrity policiesi_policies;. That is,p;’s integrity policies are applied to the succeeding
queries. Line 32 checks the integrity of the returned proof by calling the functi@#@CKPROOHNTEGRITY. The
function returns a pair of a boolean valueug or falsg and a simplified proof as we explain below. If the proof
satisfiesp;’s integrity policies, line 32 returns the proof returned by the functietECKPROOHANTEGRITY. If p;
does not belong tecurs, line 35 issues a remote query with principals integrity policies; that is, the querier
principal’s integrity policies are applied to the succeeding queries. Line 36 returns the proof returned by the function
without checking its integrity. In other words, only principals trusted by their querier principals in terms of the integrity
of their query results need to enforce their integrity policies on proofs received from remote principals.

Algorithm for checking the integrity of a proof. The functionCHECKPROOHANTEGRITY in Figure 16 checks
whether a proof satisfies given integrity policies, based on the definition given in SBctioi takes as parameters
principal p. that checks the integrity of the proof, query stripgnoncen., proof pf, andp.’s integrity policies
i_policies.. The function also converts the hierarchical proof tree in a proof into a flat one that contains encrypted
query results in the leaf nodes; that is, all the intermediate nodes are removed from the proof tree while checking the
integrity of those nodes.

Line 1 checks whether noneein the proofpf is same as the nongefor the query. If that is not true, line 2
returnsfalse with no proof tree. Line 3 checks whethgr trusts the integrity of principap,’s evaluating query
g. If that holds true, line 4 returnsue with the proof given as a parameter. Line 5 checks whether pringjpal
can decrypt the proof (i.e., principal. is a receiver principal of the progiff) and reads rule? at the root of the
proof tree. Line 6 checks whether rutesigned by principap, satisfiesp.'s integrity policies. If that holds true,
lines 7-11 check whether all the proofs for the atoms of Rilgatisfies,.’s integrity policies by calling the function
CHECKPROOHNTEGRITY recursively. If all the proofs satisfy the integrity policies, line 11 returne with the proof
that contains the concatenation of the subproofs that correspond to the leaf nodes of the initial proof tree.

Notice that it is necessary for the principal that checks the integrity of a proof to be able to read all the rules in the
intermediate nodes of the proof tree.

18

GENERATEPROOHpy, p1, ¢, N, TCurs, i_policiesg, i-policies , c_policies, K By)

1
2
3
4
5
6
7
8

9
10
11
12
13
14

15

16
17

18
19

20
21

22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37

> Check whether there is any principabinvrs that satisfiep,'s confidentiality policies.
s «— rcors N (U, t;) for all policies(rp;, t;) € c_policies; whererp; matches;
if s =01 if setsis empty.
then return (p1, po, ¢, n, (REJECT)k,)
pr — minIndex(s, rcors)
> Check whether principal; satisfies queriepy’s integrity policies.
if 3 policy p = (rp,t) | ((p € ipoliciesy) A (rp matchesy) A (p1 € t))
then appendp; to rcurs
if 3factf | ((f € KB1) A (f matchesy))
then return (p1,pr, q,n, (TRUE K,)
elseif3ruler = A — By,...,B, | ((r € KB;1) A (A matches)))
then unify g andA «— By, ..., By, resultingind’ — Bj,..., B},
fori« 1ton
do pf, «— GENERATEPROOK(p1, p1, B}, n, rcurs, i_policiesy, i_policiesy, c-policiesy, K By)
wherepf; = (ps(i)» Pri), B, (pti)Krm),
s(i) andr(¢) are sender and receiver principalgpfrespectively.
if Vi ((r(7) =1) A (((pt; = value;) A (value; = TRUB)
V((PY = 11 (pr(ig), (valuei)k,,))) AV ((r(i.§) = 1) A (value;; = TRUB))))
then return (p1, p, ¢, n, (TRUB k)
elseifVi ((r(z) # 1) vV ((r(i) = 1) A (((pt; = value;) A (value; = TRUE))
V(P = 1L (Pr(i gy, (valueij) i,) A (Vi ((r(i,) # 1) V ((r(i, 5) = 1) A (value;; = TRUB)))))))
thenif 3 p,v ((prr € 8) A (Vi ((r(i) =1) v (((pt; = value;)
Aindex(py(iy, revrs) < index(pyr, revrs))) V (P = I (prei,j), (valuei) k., ;)
AV ((r(d,7) = 1) V (index(py(; 5y, revrs) < index(py,revrs)))))))))
then return (plvpr/v q,n, ((Hl (pr(i)vpti))(nij (pr(i,j)v (ptij)Kr(i,j))))Kr’)
where((pf; = (p(s)s Pr(iys Bl (pli) i,) A (r(6) # 1))
V((r(i) = 0) A (pti = ILi(pr(ig), (valueij) k.,) A1(i, 5) # 1))
> Construct a proof with a rule that satisfies principgs integrity policies ang;’s confidentiality policies.
if SruleR | (Re KB1))AN(R=A«— By A...AB,) A(Amatcheg)))
A3 policy p | ((p € cpolicies1) A (p = (rp,t)) A rp matches ruler)))
then if 3 policy p’ = (rp/,t’') | ((p’ € i-policiesy) A (rp’ matchesR) A (py € t'))
then unify ¢ and ruleR resultingR’ = A’ — Bj,...,B),
fori— 1ton
do pf, <« GENERATEPROORp1, p1, B, n, rcvrs, i_policiesy, i_policiesy, c_policiesy, K By)
wherepf; = (psc), Pr(i)s Bis 1, (Pti) i, ;)), @nd
s(i) andr(7) are sender and receiver principalgf
if 3pr ((prr € 8) A (Vi (index(p,(, revrs) < index(p,,rcvrs))))
then return (p1,pr, q,n, (R, p.),11; pf;) i,) wherep, is a signer principal of rulé?
> If we fail to construct a proof that derives the query locally, we try to obtain a proof from a remote principal.
if 3 principalp, that is capable of handling quegy
thenif p; € rcors
then proof < ISSUEREMOTEQUERY(p;, q, rcvrs, i_policiesy)
(trusted, proof') < CHECKPROOHANTEGRITY(p1, ¢, n, proof,i_policiesy)
if trusted
then return proof’
else proof «+ ISSUEREMOTEQUERY(py, g, rcvrs, i_policiesy)
return proof
return (p1,pr, q,n, (FALSB k)

Figure 15. Algorithm for generating a proof.

19

CHECKPROOHNTEGRITY(p,, ¢, N, Pf, i_policies.)

1 if j((pf: (psameIvn’ (pt)KTv))/\(nc =n))
2 then return (false, NULL)
3 if (I policyp = (rp,t) | ((p € ipolicies.) A (rp matches query) A (ps € t)))
4 then return (true, pf)
5 elseif((r = ¢) A (pt= (R, pa), (I, Pf,))
whereR is a rule,p, is the signer principal oR, andpf, for i = 1 to n are subproofs.
6 then if 3 policy p = (rp,t) | ((p € i-policies.) A (rp matches ruleR) A (pq € t)
A(principalp. holds a valid digital signature faR signed byp,))
whereR=A« B A...ANB,
7 thenfori« 1ton
8 do (trust,pf!) = CHECKPROOHNTEGRITY(p,, B, pf;, i_policies.)
9 if —trust
10 then return (false, NULL)
11 return (true, (pe, pe, q,n, (IL; pf!)Kk.))
12 else return (false, NULL)

13 else return (false, NULL)

Figure 16. Algorithm for checking proof integrity.

5.6 Example application

We revisit the example of an incident management system (IMS); in Figyrevery querier principal trusts the
integrity of the principal that handles its query in terms of the correctness of the query’s result. This time, we have
some principals that define security policies on rules as well as facts.

Figure 17 shows how usebob (principal pg) requests images from the surveillance camera image server
managed by the airport (principak). Principal p; agrees with the policy for roleperation_chief, that is,
role(P, operation_chief) «— role(P, police_chief, police_dept) N in(P,airport) is correct, and principad, that
runs the role-membership server of IMS uses that rule to evaluate a tule(yod, operation_chief). However,
principalp; does not trust the answer from principal sincep, is temporarily assigned to manage the role server for
the incident, and thus principgal does not establish a long-term trust relation with princjpal Fortunately, princi-
pal p, trusts the role-membership server of the police department and the location tracking service run by principals
p3 andp, respectively, because those are long-running existing services. Pripgigathus able to return a proof
tree that contains the proofs from principglandp,, and principalp; trusts that proof. The proof tree also satisfies
the confidentiality policies of principals,, ps andp,. Principalp, only returns the evaluation result of the query
?location(bob, airport) because it belongs toust(location(P, L)) = {p4} defined by principap; .

6 Soundness of the algorithm

We show that our algorithm constructs a proof tree only if the confidentiality and integrity policies of every par-
ticipating principal are satisfielWe give the proof for the general case in Secpmhich covers the basic case in
Section4 as its special case. We separate the proof into two parts: the proof on confidentiality policies, and the proof
on integrity policies.

6.1 Proof for confidentiality policies

We prove that our algorithm constructs a proof tree only if the confidentiality policies of every participating princi-
pal are satisfied by induction below.

1The other way (completeness of the algorithm) does not hold, as we discuss in Settard we leave it as our future work.

20

|
1 grant(P) <« role(P,operation_chief) :
|
I trust(role(P, operation_chief) — role(P,police_chief,police_dept)) = {p2} :
I
|
|
|

I
***** I trust(role(P, R, police_dept)) = {ps}
I
: trust(location(P, L)) = {ps}

?grant(bob)

?roleln(bob, police_chie f, police_dept)

|
I location(P, L) «— owner(P, D) A location(D, L)
|

1 acl(location(P, L)) = {p1, pa}
I

=~ =7 trust(location(D, L)) = {ps}
I

roleIn(bob, police_chief, police_dept)

: acl(role(P, R, police_dept)) = {‘zol,pz}‘r T
|

location(D, L) «— in(A,L) Nwifi(D,A)
in(ap39, airport)

acl(location(D, L)) = {ps}
trust(wifi(D, L)) = {pz}

Figure 17. Example of an emergency response system. Principal po is a first responder whose
role is “operation _chief”. Principal p; represents a surveillance camera image server. Principal

p2 is the role membership server of an incident management system (IMS). Principal ps3 is the
role membership server of a police department. Principal p4 represents a location-tracking
service. The arrows represent the flow of queries among the principals. Each arrow is labeled

with a query and a returned proof tree. The query is shown above the dashed line; the proof

is shown below the line. Each principal’s rules, facts and policies are shown in a dashed
rectangle.

21

. qo ij q Qk—2 qr—1

Po P Pk—1 Pk

Case 1: Only principal py belongs to the set receivers(pg).

. qo0 : q1 qi-1 . q qr—2 : k-1 .
Po V41 Yz

Pr—-1 Pk

Case 2: Some intermediate principal p; belongs to the set receivers(py) as well.

Figure 18. Linear proof trees with and without an intermediate principal that belongs to the

set receivers. Black circles denote principals that belong to receivers, and white circles denote
principals that does not belong to receivers. Each circle is labeled with a principal name, and
each arrow is labeled with a query name.

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that pgpcipal
makes query; to principalp;, andp;, which does not issue any subqueries, returns a proof whose proof tree only
contains a root node. We only need to show ghét confidentiality policies are satisfied, becapgeloes not disclose

any information in its knowledge base pg. To satisfyp,’s confidentiality policiesp; must have a confidentiality
policy (rp, t) such that rule patterrp matches query andp; belongs to the set The functionGENERATEPROOFIN
Figurel5ensures this condition in line 3. Therefore, principal@ndp; construct a proof only if their confidentiality
policies are satisfied.

Induction step: We next show that, if our claim holds for a proof tree whose depth is lessktht@en it also holds

for a proof tree of depth. (The base case above considers a tree of depth 0.) Without loss of generality, we consider
the case that a proof tree is linear. Because our algorithm for enforcing confidentiality policies on each node depends
only on the nodes on the path from that node to the root in a proof tree; the node is not aware of the existence of the
nodes in other branches of the proof tree.

Suppose that there is a linear tree of deptiwvhere nodes., ..., n, are ordered from the root to the leaf. Let
Po, - - -, Pr. be the principals that represent nodgs. . ., n, respectively, andyq, ..., qx_1 be the queries, wherg
is the query byp; to p;11. When principalp, issues queryj, to p;, we consider two cases in Figut8. In case 1,
only principalpg belongs to a set of principals:ceivers(py) defined in Sectio®.4. In case 2, there are some other
principals in the seteceivers(py) besides principab.

We first consider case 1. Because principatloes not belong toeceivers(py), principal p; cannot distinguish
queryq, issued by principap;, from ¢, issued by principap, instead, because all the parameters in those queries
are same in both cases; the seteivers contains only principap, in both cases. The same can be observed for
p2,-..,pk- In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree forgqisery
constructed by principals,, . . . , py, if their confidentiality policies are satisfied. Because principals. . , p; do not
distinguish the former case from the latter, our algorithm ensures that their confidentiality policies are preserved in
the former case as well. The functicENERATEPROOF in Figure 15 ensures principah,’s confidentiality policies
in lines 3. Principapy’s confidentiality policies are vacuously satisfied becaygsgoes not disclose any information.

We, therefore, prove that our algorithm ensures the confidentiality policies of the pringipals, p;, with a proof
tree of depthk in case 1.

We next consider case 2. Without loss of generality, we assume that there is a single ppincipateivers(py)

between principgby andp;.. There are two subcases to be considered. In the first, subcase 2a, pyincgratiecrypt

22

all the nodes; 1, ..., ng in the proof tree for query;; that is, principal®;1, ..., px choosep; as the receiver of
their returning proofs. Because principglsi, . . . , pr do not choose, from receivers(p;) = {po,pi} forj =1+1

to k as the receiver principal of their proofs respectively, their algorithm works in the same way as the case where
the setreceivers(p;) = {p} for j = [to k. Therefore, by the induction hypothesis, our algorithm ensures the
confidentiality policies op; 1, - . ., px. Because principal; returns a proof with a single-node proof tree, principals
po,-..,pi—1 are not aware of the fact that principal issues queryy; for handling queryg;_,. Therefore, by the
induction hypothesis, our algorithm ensures the confidentiality policigg,of ., p;_1. Principalp;’s confidentiality
policies are also satisfied because our algorithm for enforcing confidentiality policigsveorks in the same way

as the case that; does not issue any subqueries and constructs a single-node proof tree responding te_query
because there is no constraintgrdue to recursive encryption becaygsean decrypt all the nodes in the proof from
pir1 to pi. Therefore, our claim holds for subcase 2a.

The second subcase 2b is that principatannot decrypt some nodes in the proof tree received fsom. If
principal p; cannot decrypt node,, betweenn; andn; (i.e.,l < m < k), the proof tree does not satisfy’s
integrity policies, and the proof fails. We, therefore, only consider the case;thahnot decrypt leaf node;, only.
When noden;, chooseg), as a receiver principal, our algorithm for enforcing confidentiality policies works for nodes
ni,...,NnE_1 in the same way as the case that nagds omitted (i.e., principap,_; does not issue query,_, to
i) becausep,’s proof encrypted with principgby’s public key does not interfere with the processes of principals
p1,...,pk—1 for choosing a receiver principal of their proofs from the seteivers = {po, p;} or {po}. The depth
of the tree with node®,...,n;_1 is k — 1. Therefore, by the induction hypothesis, our algorithm ensures that
a proof tree is constructed only when the confidentiality policies of principals. ., p;_1 are satisfied. Principal
po’S confidentiality policies are satisfied vacuously, ant confidentiality policies of principgb, are also satisfied
because our algorithm o, works in the same way as the case thatconstructs a proof tree of a single depth
responding to queryy_; issued by principapy. Therefore, our algorithm ensures that a proof tree is constructed
only when the confidentiality policies of every principal is satisfied. We cover all the cases in terms of confidentiality
policies and conclude the proof.

6.2 Proof for integrity policies

We prove that our algorithm constructs a proof tree only if the integrity policies of every participating principal are
satisfied by induction below.

Base case: We first show that our claim holds in the case of a single-node proof tree. Suppose that pgpcipal
makes queryj, to principalp;, andp,, which does not issue any subqueries, returns a single-node proof tree. We only
need to show that,’s integrity policies are satisfied, becaysedoes not disclose any information in its knowledge
base. To satisfyy's integrity policies,p, must have an integrity policyp, t) such that rule patterrp matches query

g andp; belongs to set. Line 31 inpy’s function GENERATEPROOFIn Figure 15 obtains a proof fronp; by calling

the functionissUEREMOTEQUERY, and line 32 in the function calls the functi@aHECKPROOHNTEGRITY whose

line 3 ensures that the proof satisfies the above condition. Therefore, pringipatsl p; construct a proof if their
integrity polices are satisfied.

Induction step: We next show that if our claim holds for a proof tree whose depth is lessitttaan it also holds for
a proof tree of deptlk. We consider the case that a proof tree is linear as we do in Sécfiopecause we can check
the integrity of a proof tree by checking whether every path from the root to each leaf node satisfies given integrity
policies. This claim is proved by induction as follows. The base case holds because there is only a single node in a
proof tree. Suppose that our claim holds for a proof tree of dépthl. By induction hypothesis, each subtree of
depthk — 1 satisfies given integrity policies if every path from the root node to each leaf node satisfies the integrity
policies. If every path from the root node to each leaf node in the proof tree of degattisfies integrity policies, the
root node must satisfy the policies as well. According to our definition of the integrity of a proof tree in Sedfian
proof tree of deptlt satisfies given integrity policies if the root node and all the subtrees of depthunder the root
node satisfy the integrity policies. Therefore, our claim holds for the proof tree of &eptid we conclude the proof
of the above claim.

We assume the same linear proof tree in Sedidrnthat is, there is a linear tree of lengthwhere nodesy, . .., nx
are ordered from the root to the leaf. gt . . . , pi be the principals that represent nodsgs. . . , nj respectively, and

23

qo,- - -, qx—1 be the queries as before. When principglissues queryy, to p;, we consider the same two cases in
Figurel8.

We first consider case 1. Because principaldoes not belong to the setceivers(py), principal p, cannot
distinguish queryy; issued by principab; from ¢; issued by principab, instead, because all the parameters in those
gueries are same in both cases. In the latter case, by the induction hypothesis, our algorithm ensures that a proof tree for
queryq; is constructed by principals, . . . , py if their integrity policies are satisfied. Because principals. . ., px
do not distinguish the former case from the latter, our algorithm ensures their integrity policies in the former case
as well. Principap; checks the integrity of the proof from principgd in the same way regardless of whetheis
issuing queryy; is for handling query;y or not. Therefore, by the induction hypothegis's integrity policies are
satisfied. Principab, checks the integrity of the proof from principad with the functionCHECKPROOHANTEGRITY
as follows. The integrity of the rule in nodsg is ensured in line 6, and, by the induction hypothesis, the integrity of
the subtree of depth — 1 from principalp, is ensured in line 8 by checking the integrity of the proof tree whose root
node isny by calling the functioncHECKPROOHANTEGRITY recursively. Therefore, the function ensures th#s
integrity policies are satisfied with the proof tree from nede We, therefore, prove that our algorithm ensures the
integrity policies of the principalgy, . . . , px, with a proof tree of depthk in case 1.

We next consider case 2. Without loss of generality, we assume that there is a ppptipakeivers(py) between
principal py andp,. There are two subcases to be considered. In the first, subcase 2a, the subproof from principal
p; is a single-node proof tree that contains a query’s result; principals . . . , pr choosep; as the receiver of their
nodes. Because principalg, ..., p;—1 are not aware of the fact that principal issues queryy;, by the induction
hypothesis, the integrity policies of principals, . . ., p;—1 are satisfied. The fact that principal belongs to the list
receivers(p;) of queryg, does not change the behaviors of principals,, . . ., pr for handling queryy;. Because
our algorithm works for principalg;, ..., px in the same way that principal issues quenjindependently, by the
induction hypothesis, our algorithm ensures that pringipalintegrity policies are satisfied for subcase 2a.

The second case 2b is that a proof from principatontains node:;, whose proof tree is encrypted wiihy's
public key, as it could be done in line 19 of the functieBNERATEPROOFin Figure15. The proof fromp; does not
contain any other encrypted nodes becayseeeds to read the nodes, 1, ..., n,_;1 to check the integrity of the
proof fromp; ;. Principalp; checks whether the rules in nodes 1, . . ., ny_1 satisfieg,’s integrity policies, which
is done in line 6 of the functio®HECKPROOHANTEGRITY in Figure16. If principal p; cannot decrypt all the nodes
ni+1,---,Nk—1, p; returns a proof that contaifsALSE because its failure to check the integrity of the proof, and,
therefore, the proof tree for quegy is not constructed. Because principads. . ., p;—1 cannot distinguish whether
the encrypted boolean value in the proof fregmis generated by principal; or its descendant principal., by the
induction hypothesis, our algorithm ensures that the integrity polices of pringipals.,p;_1 are satisfied ifpy
accepts a proof tree whose leaf nadeontains an encrypted boolean value in nage

We next consider the integrity policies of principals. . ., px. In order for principap; to check the integrity of the
proof from principalp;+1, p; must read all the intermediate nodes 1, ..., nx—1 in that proof. Therefore, principals
pi+1,- -+, PE—1 Must choose,; as the receiver principal of their returning proofs. Principali, ..., pr—1 work in
the same way as the case that principabksues query; without receivingy;_; so, by the induction hypothesis, their
integrity policies are preserved. Principal's integrity policies are satisfied vacuously. Principgé algorithm for
enforcing integrity policies does not read the encrypted value in medend works in the same way regardless of
returning a proof te,_; or not. Therefore, by the induction hypothesiss integrity policies are also preserved. We
cover all the cases and conclude the proof.

7 Related work

Although others have developed context-sensitive authorization systems, they all use a trusted central context server
that collects context information, and they do not address the protection of context information used in authorization
rules or facts. Cerberu8][allows principals to define context-sensitive policies based on first-order logic. It expresses
context information with context predicates such as “Location” and “Temperature”, similar to our approach. Cerberus
has a monolithic context infrastructure that contains current and historical context information, and a single inference
engine evaluates all the authorization decisions. Generalized RBAC (GRBAQ) ihtroduces the environmental
role (ERole) to achieve context-aware authorization. Their approach is based on the concept of Role-based access-
control (RBAC). Constraints on environmental (context) variables can be defined with a Prolog-like logic language.
Authorization is based on an ordinary role and an ERole; in effect, the ERole is an additional condition to be satisfied
for an authorization decision. GRBAC has a central context management service that maintains a snapshot of current

24

environmental conditions. OASIS}[12] is an RBAC system that can evaluate contextual conditions at both role-
activation time and access time. The context conditions are expressed as context predicates in the Horn clauses of
role-activation rules. OASIS has a centralized object-relational database that stores context predicatesl8Myles [
provides a XML-based authorization language for defining privacy policies that protect users’ location information.
Users must trust a set of validators that collect context information and make authorization decisions.

SD3 [15] is an inference engine for a trust management system that constructs a proof tree for a given query so
that the querier can verify the correctness of the query result. Its focus is to retrieve certificates (that correspond to
facts in a knowledge base) from remote hosts automatically, and a whole proof tree is constructed on a central server.
Therefore, all the remote hosts must trust the central server to preserve the confidentiality policies of their facts.

The idea of delegating the evaluation of a proof to a trusted server also appears in some protocols used to verify a
certificate in a public-key infrastructure. To verify a certificate, one must construct a certificate chain from the certifi-
cate authority (CA) that issued the certificate to a CA that is trusted by a querier. The Simple Certificate Validation
Protocol (SCVP) 17] allows a client with limited processing and communication capabilities to ask a trusted server
about the validity of a certificate. The client can specify a list of trusted CAs in its validation policy to be observed by
the server. The client can ask the server to provide additional information, such as a certification path and correspond-
ing revocation status, depending on the trustworthiness of the server. Although it is similar to our work in the sense
that the protocol uses the client’s trust in the server to split the overhead of verifying a certificate between them, it is
specialized in handling certificate chains, and it does not support general rules. In addition, there is no mechanism that
addresses the confidentiality of rules or facts, because cross certificates (trust relations) among CAs are considered to
be public knowledge.

8 Discussion

In this section, we discuss several design issues and security properties of our system.
8.1 Completeness of our algorithm

The algorithm of the functiotGENERATEPROOF in Figure 10 and Figurel5 is not complete. That is, it does
not guarantee to find a proof that derives a granting decision, because when the function finds a proof that contains
encrypted subproofs from other principals, it stops searching other proofs. If the returned proof turns out to be invalid
because some encrypted subproofs derfaése or because the evaluation is impossible due to tight integrity or
confidentiality policies, our algorithm fails to find a possibly existing proof with some other combination of rules and
facts. To address this problem, we need to modify our algorithm so that it continues to search for another proof from
the point of the search space where a previous proof is found.

8.2 Security assurance

Our authorization scheme ensures that each principal’s confidentiality policies are preserved while participating
in the evaluation of an authorization query. A malicious principal that represents an internal node of a proof subtree
cannot obtain a rule or a fact from other principals by modifyingréueiverdist in a subquery it issues, because each
principal discloses its rules or facts to other principals only if they satisfy its confidentiality policies as described in
Section6.1

The malicious principal could also modify the integrity policiggoliciesin a subquery to disturb the evaluation of
a query. This attack can be prevented if every principal publishes its integrity policies with its digital signature on a
well-known server, and each principal can cache other principal’s integrity policies.ddlieiesin a query can then
be retrieved by identifying the principal specified by the last index of-theivers list.

We use a nonce to prevent a reply attack by a malicious principal that is capable of intercepting and modifying a
message. All the participating principals that evaluate an authorization query use the same nonce because the receiver
of a proof might be different from a querier principal. The nonce in a proof must match the nonce in the query, for the
proof to be valid.

25

8.3 Complexity of policy definition

Although it seems difficult for each principal to define confidentiality and integrity policies for rules and facts, it is
possible for a principal to refer to the policies of other principals to reduce the administrative work for defining policies.
For example, principgby could define a meta-rule that says “if principaltrusts the integrity of the evaluation of a
queryq by principalps, thenpg trusts the integrity ofy in the same way.” This meta-rule would allow most users to
defer on many policies to a trusted administrator, for example.

When principals consider trust relations in terms of the confidentiality and integrity pdliarestive it is possible
for each principal to expand its confidentiality and integrity policies automatically while collaborating with other
principals to construct proof trees. Here we assume that the integrity and confidentiality policies of each principal are
public knowledge as stated in Sectid#.

We first describe how each principal expands its integrity policies by issuing a query to another principal. Suppose
that principalp, issues a query, (?grant(p)) to principalp; andp; issues a subsequent quety(?a(z)) to ps. If
principalpg trustsp, s integrity for evaluating queryy (i.e.,p1 € trusto(grant(p)), po also trustg,’s integrity for
evaluating query;; implicitly. Therefore,p, should update its integrity policy for quegy such thatrusto(a(x)) =
trusto(a(x)) Utrust; (a(x)). Principalpy could obtainp,’s integrity policytrust; (a(z)) with querygoy’s result from
p1. The handler principagh; actually returns the integrity policy on the rule pattern that is matched with the gyiery
that is, if principalp; handling queryrant(bob) unifies queryg, with rule grant(P) «— a(P) and issues a remote
query ?a(bod), p; returnstrust; (a(P)) so that a querier can update its policies on rule patiéf) rather than on
its instancex(bobd). If a handler principal obtains integrity policies from its downstream principals in the same way, it
forwards those integrity policies to its querier so that they are shared among the principals involved in constructing a
proof tree.

We can apply the same idea to update confidentiality policies of each principal. For example, suppose that principal
p1 issues a query; (?a(x)) to principal p,. Principalps returns a query result j§; satisfiesp,’s confidentiality
policies (i.e.,p1 € acly(a(x))). If p; allows another principaby to discloseq;’s result based on its policypf €
acli(a(z))), thenps should also allowp, to disclose it; principap. updates its confidentiality policies such that
aclz(a(x)) = acla(a(z)) Uacly(a(x)).

8.4 Scalability

When many principals are involved in constructing a proof tree that contains a lot of rules and facts, the communi-
cation overhead (including work for security operations such as the verification of digital signatures) could cause long
latency. Although we leave the experiments to evaluate the scalability of our system as our future work, we discuss
several possible solutions to address this issue. First, each querier could set a timeout period to cancel a query request,
and the querier interprets the occurrence of a timeout event as that the query rfedsdt is

Second, although our algorithm described in Seclidithooses a querier in a depth-first manner, we could modify
our algorithm so that a querier principal can choose the handler principal that is most likely to reply with the minimum
latency from a list of principals capable of handling the query. Because we believe that most authorization granting
services and other query services are long-running, it may be possible for each principal to choose a good handler
principal based on the logs of the latency of the past queries. It may also be helpful to issues the same query to
multiple principals in parallel.

Third, there are some situations where we can reduce the number of principals involved in constructing a proof tree
by replicating rules, facts, and security policies aggressively while preserving each principal’s security policies. We
give a small example in FigurEd that shows how the distributed processing is simplified. In Fid@erincipalpg
issues querygrant(bob) to p1, which issues subsequent quenje(bob, doctor) to p,. The three principalgg, p1,
andp, are involved in the original query processing in Figdfia. Because principaly trusts the integrity op’s
query result for?’grant(bob), it can also trust the integrity of rulgrant(P) «— role(P,doctor), which is unified
with the query. In addition, when principg) considers trust relations in integrity policies transitipg,trusts the
integrity of factrole(bob, doctor) maintained by principap,. Thereforep, replicatesp,’s rule and integrity policy
trust(role(P, doctor)) = {p=2} into its repository, and, as a result, the query processing is simplified as in Egure
if principal p, allowsp, to read the query result Gi-ole(P, Q).

26

Knowledge base / Security policies

Do | trust(grant(P)) = {p:} : © grant(P) « role(P, doctor)

Po o trust(role(P, doctor)) = {p2}

. grant(P) « role(P, doctor)
L trust(role(P, doctor)) = {ps}

?role(bob, doctor)

h o acl(grant(P)) = {po} :
i acl(grant(P) « role(P,Q)) = {po} :
?role(bob, doctor) Do role(bob, doctor)
acl(role(P,Q)) = {po,p1}
role(bob, doctor) :
p2 -
o acl(role(P, Q) = {po,p1}
(a) Original distributed processing (b) Simplified distributed processing
Figure 19. Simplified distributed processing of a proof tree. Principal po replicates rule
grant(P) < role(P,doctor) from p; and integrity policy trust(role(P,doctor)) = {p2} from prin-
cipal p; into its repository, and can in the future make queries directly to p2.

8.5 Expressiveness of the authorization language

Our example in Sectio.1 represents policies about the current context. Although we do not treat temporal
information specially in our language, our language can express some policies about historical context by defining
predicates that take a timestamp as an argument. The following is an example policy in a workflow system where an
authorization decision is based on whether a requester has performed a series of actions in a specified sequence.

grant(P, purchase, X) < approved(mgr, P, X, t1), approved(senior_mgr, P, X to), prior(ti,ta)

The above policy requires that a requester needs to obtain an approval from the manager first, and then from the senior
manager. The predicateior is used to check whether timestamgs prior tot,.

Our language does not expreseparation of duty?] in role-based access control (RBAC) mod&d], because to
express separation of duty with a logic language (as Jajdd]gfoposes) requires support for rules that contain the
negations of atoms. A querier possibly obtains a false negative in our system due to the constraints of the security
policies of each principal. Therefore, a query that is a negation of an atom causes false positive, which is not acceptable
to any authorization system.

8.6 User feedback

It would be useful, in the case of a FALSE proof, to provide some feedback for the user about why the proof
failed and what policies prevent them from obtaining the desired access. Although to return an incomplete proof is a
plausible solution, there are two issues to be addressed. First, the user might not have sufficient privileges to receive
the incomplete proof, and, as a result, the user is not able to know that the subproof failed. Second, because there
could be multiple incomplete proofs for a given query, we need some mechanism that chooses a useful proof for the
user from them. The KNOW systerti§], which is a centralized rule-based authorization system, proposes to use a
cost function to rank proofs for a query based on the likeliness that the user is able to satisfy the conditions in the
proofs. Itis, however, difficult to define a reasonable cost function in a decentralized system like ours because there is
no single administrator who knows all the rules and security policies that are involved in authorization decisions. We
leave this complex problem for future work.

27

9 Summary and future work

We describe a secure context-sensitive authorization system that supports the decentralized construction and evalu-
ation of authorization decisions, involving multiple principals from different administrative domains, and respects the
confidentiality and integrity policies of each principal involved.

We define our security model based on the notiorutd patternghat allow each principal to define confidentiality
and integrity policies on the rules and facts in its knowledge base. Because our system evaluates an authorization
guery on multiple evaluation nodes in a distributed way, it is possible for each principal to choose to which principal it
is willing to disclose the information needed to evaluate the authorization query. We describe our key algorithms and
prove that our algorithms guarantee that the proof for an authorization query is constructed only if the security policies
of each participating principals are satisfied.

Our current prototype system is implemented in Java, by extending XP20pwgith a feature to construct a proof
for a query instead of simply evaluating the query and returning a result. We plan to deploy our current implementation
in realistic large-scale applications and to evaluate the performance and scalability of our system. We also plan to
explore various optimization techniques such as caching and parallel search for a proof to improve the performance
and the scalability of the system. Another possible extension of our system is to add some mechanism for giving user
feedback as we discuss in SectR®.

Acknowledgments

We thank the anonymous reviewers whose valuable comments and suggestions helped improve the quality of this
paper. We are also grateful to Guanling Chen, for providing helpful feedback on earlier drafts of this paper. This project
was supported under Award No. 2000-DT-CX-K001 from the Office for Domestic Preparedness, U.S. Department of
Homeland Security. Points of view in this document are those of the author(s) and do not necessarily represent the
official position of the U.S. Department of Homeland Security.

References

[1] Summary of HIPAA privacy rule, 200ttp://www.hhs.gov/ocr/privacysummary.pdf
[2] G.-J. Ahn and R. Sandhu. The RSL99 language for role-based separation of duty constr:RtﬁiAClmg Proceedings of
the fourth ACM Workshop on Role-based Access Carmegles 43—-54. ACM Press, 1999.
[3] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and D. Mickunas. Cerberus: a context-aware security scheme for smart spaces.
In Proceedings of the First IEEE International Conference on Pervasive Computing and Communjqadigpes 489—496.
IEEE Computer Society, March 2003.
[4] J.Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and its support for active st&rowegdings
of the sixth ACM Symposium on Access Control Models and Techngl6(lg492-540, 2002.
[5] A.R. Beresford and F. Stajano. Location Privacy in Pervasive ComputifitE Pervasive Computing(1):46-55, January-
March 2003.
[6] K. Biba. Integrity considerations for secure computer systems. Technical Report 76-372, U.S. Air Force Electronic Systems
Division, 1977.
[7] G. Chen, M. Li, and D. Kotz. Design and implementation of a large-scale context fusion netwofirstiiAnnual In-
ternational Conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitmes 246—-255, Aug.
2004.
[8] M. J. Covington, M. Ahamad, and S. Srinivasan. A security architecture for context-aware applications. Technical Report
GIT-CC-01-12, Georgia Institute of Technology, May 2001.
[9] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd. Securing context-aware applications
using environment roles. IRroceedings of the Sixth ACM Symposium on Access Control Models and Technqagess
10-20. ACM Press, 2001.
[10] M. Gruteser and D. Grunwald. Anonymous usage of location-based services through spatial and temporal clogkdng. In
ceedings of Mobisys 2003: The First International Conference on Mobile Systems, Applications, and,Sawi€eancisco,
CA, May 2003. USENIX Associations.
[11] U. Hengartner and P. Steenkiste. Access control to information in pervasive computing environmeRtsc. laf 9th
Workshop on Hot Topics in Operating Systems (HotOSgxges 157-162, May 2003.
[12] J. A. Hine, W. Yao, J. Bacon, and K. Moody. An architecture for distributed OASIS servicd&IRFACM International
Conference on Distributed Systems Platforpegyes 104—-120. Springer-Verlag New York, Inc., April 2000.
[13] National incident management system (coordination draft), 2084.//www.dhs.gov/dhspublic/interweb/
assetlibrary/NIMS-90-web.pdf

28

http://www.hhs.gov/ocr/privacysummary.pdf
http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf
http://www.dhs.gov/dhspublic/interweb/assetlibrary/NIMS-90-web.pdf

[14]
[15]

[16]

[17]

[18]
[19]

[20]

S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing authorizatio®sodeedings of the
1997 IEEE Symposium on Security and Privgiages 31-42. IEEE Press, 2001.

T. Jim. SD3: A trust management system with certified evaluatiofrdéceedings of the IEEE Symposium on Security and
Privacy, pages 106-115. IEEE Computer Society, 2001.

A. Kapadia, G. Sampemane, and R. H. Campbell. KNOW Why your access was denied: regulating feedback for usable
security. INCCS '04: Proceedings of the 11th ACM conference on Computer and Communications Spegety52—61.

ACM Press, 2004.

A. Malpani, R. Housley, and T. Freeman. Simple certificate validation protocol (SCVP). Internet Draft, draft-ietf-pkix-scvp-
14.txt, April 2004. http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.

0.pdf .

G. Myles, A. Friday, and N. Davies. Preserving privacy in environments with location-based applic#iBisPervasive
Computing 2(1):56—64, January-March 2003.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access controllBBEeBomputer29(2):38—

47, Feb 1996.

J. Vaucher. XProlog.java: the successor to Winikoff's WProlog, Feb 2088p://www.iro.umontreal.ca/
~vaucher/XProlog/AA _README

29

http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xamcl-1.0.pdf
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README
http://www.iro.umontreal.ca/~vaucher/XProlog/AA_README

	Secure Context-sensitive Authorization
	Dartmouth Digital Commons Citation

	Introduction
	Background
	Authorization rule language
	Proof tree

	Security policies
	Rule patterns
	Integrity policies
	Confidentiality policies
	Assumptions

	Authorization for the basic case
	Architecture
	Proof object
	Decomposition of a proof tree
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Authorization for the general case
	Integrity of a proof tree
	Representation of a proof
	Decomposition of proof trees.
	Enforcement of confidentiality policies
	Algorithms
	Example application

	Soundness of the algorithm
	Proof for confidentiality policies
	Proof for integrity policies

	Related work
	Discussion
	Completeness of our algorithm
	Security assurance
	Complexity of policy definition
	Scalability
	Expressiveness of the authorization language
	User feedback

	Summary and future work

