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MOSSMAN ET AL.

ramifications of c-fos and/or c-jun trans-
activation may be cell-type specific, Fos
and Jun proteins are considered early-
response gene products that may regulate
the expression of other genes required for
progression through the cell cycle (14),
programmed cell death, i.e., apoptosis
(16), or transformation of cells (17).

Activation of the MAPK cascade involv-
ing phosphorylation and dephosphorylation
of a number of proteins leads to transactiva-
tion of c-jun and a number of interrelated
transcription factors (18-20). The MAPK
cascade includes the extracellular signaling-
related kinases (ERKI, ERK2), the stress-
activated protein kinases (JNK1, JNK2)
and p38 (Figure 1). Selected arms of this
cascade can either be induced by TPA,
causing phosphorylation of the Raf protein
through a Ras-dependent mechanism or a
Ras-independent mechanism in the case of
tumor necrosis factor alpha (TNF-ax), or
other cellular stresses including endotoxin
and heat shock (21). A series of MAPK
kinase kinase (MEKK) and MAPK kinases
(MEK) may then become phosphorylated
differentially dependent upon the stimulus.
Most intriguing, the balance of activation
between ERKs, JNKs and p38 may govern

Mitogen-activated protein kinase (MAPK) cascade

Asbestos, H202, silica
TPA > ?TNF

RAF MEKK homolog

MEK1, MEK2 MEK3 MEK4

ERK1, 2 p38 JNK1, 2

c-fos/c-jun
Apoptosis *---------------- Proliferation
DNA damage

Figure 1. The mitogen-activated protein kinase (MAPK)
cascade consists of distinct phosphorylation cascades,
which in the case of ERK activation, may be triggered by
interaction of growth factors with their receptors, acti-
vation of membrane-associated receptor tyrosine
kinases, and the sequential activation of Ras and Raf
proteins. Raf then phosphorylates MEK1 and MEK2,
which in turn phosphorylate ERKs. In contrast, Ras acti-
vation may contribute to, but is not essential for, JNK or
p38 activation, but upstream kinases including both an
MEKK and MEK3 and MEK4 have been identified in this
pathway. Concentrations of asbestos and H202 that
cause apoptosis are potent activators of the MAPK cas-
cade in RPM and RLE cells, and H202 causes early and
transient increases in JNK activation. TPA and TNFa
are also agents inducing ERK and JNK activation,
respectively, in a variety of cell types.

differentiation and apoptosis in malignant
cells (PC12 neuroblastoma line) (22).

In our study we demonstrate that
asbestos fibers cause induction of multiple
signaling pathways. We first present data
showing that crocidolite asbestos causes
NFiB activation in hamster tracheal
epithelial (HTE) cells (23). We then
describe work showing activation of the
ERK MAPK cascade by crocidolite asbestos
after phosphorylation of the epidermal
growth factor receptor (EGFR) (24). Last,
we summarize how cell signaling events,
particularly the balance between ERK and
JNK activities in the MAPK pathway, may
be important in induction of cell prolifera-
tion (25,26) or apoptosis (27), with phe-
notypic end points occurring in pulmonary
epithelial and pleural mesothelial cells after
exposure to asbestos.

Methods
Celi Cultures and Exosure
to Asbesos

A diploid line of HTE cells previously
isolated in our laboratory was maintained
in Ham's F-12 medium (GIBCO, Grand
Island, NY) containing 10% newborn
bovine serum, 50 units of penicillin, and
50 pg of streptomycin per ml (23). All cells
were used at confluency at passages
between 38 and 48, and growth medium
was replaced with medium containing 2%
serum to arrest cell growth at 24 hr before
addition of test agents.

The National Institute of Environmental
Health Sciences' preparation of processed
crocidolite asbestos was obtained from
the Thermal Insulation Manufacturers
Association Fiber Repository (Mountain
View, CO) and weighed out in 5-mg
aliquots before use. After heat sterilization
in a dry oven overnight, samples were
diluted in Hank's balanced salt solution
and added directly to medium at 1.25 or
5.0 pg/cm2 dish. The latter concentration
of crocidolite induces both c-jun expression
and AP-1 DNA binding activity in HTE
and rat pleural mesothelial (RPM) cells
(10-13) and increased ERK MAPK phos-
phorylation and activity in the latter cell
type (24). A variety of nonfibrous analogs
of asbestos have been used routinely as
negative controls in these assays and do not
induce these events.

Electrophoretic Mobility Shift Assays
At periods from 2 to 24 hr after addition of
asbestos, HTE cells were isolated for prepa-
rations of nuclear extracts as described by

Staal et al. (28). Electrophoretic mobility
shift assays (EMSA) were performed using
2 to 4 pg of nuclear protein (23). The
DNA binding buffer consisted of 40 mM
HEPES buffer, 4% Ficoll 400, 200 ng
poly(dI).(dC) per pl, 1 mM MgCl2, 0.1
mM dithiothreitol, and 0.175 pmol of a
32P-end-labeled double-stranded oligonu-
cleotide containing a DNA consensus
NFiB site (23). Protein extracts were incu-
bated in DNA-binding buffer for 20 min at
room temperature before electrophoresis on
a 5% polyacrylamide gel that was then
dried and visualized by exposure to Kodak
X-Omat film. Radioactivity in retarded
binding complexes was quantitated using
phosphorimaging (23).

To determine the identity and specificity
of EMSA complexes, a 40-fold molar
excess of unlabeled NFiB binding oligo-
nudeotide or an unlabeled oligonucleotide
containing a consensus AP-1 binding
sequence (fat soluble element) was induced
in the binding reactions. We also used anti-
bodies specific to the p50 or p65 members
of the NFiB family (SC-109 and SC-1 14,
respectively, at 1 mg/ml from Santa Cruz
Biotechnology, Santa Cruz, CA) to identify
the proteins present in the retarded com-
plexes. In these experiments, we added
2 pl of each antibody for an additional
30 min after incubating nuclear proteins in
DNA-binding buffer.

Statistics
Data were analyzed by analysis of variance
using Duncan's procedure to correct for
multiple comparisons.

Results and Discussion
Figure 2 shows a time-course study demon-
strating increases in protein complexes that
bind to the NFiB consensus sequence in
HTE cells exposed to crocidolite asbestos,
compared to sham control cells. Note that
several gel-shift complexes are observed that
increase in intensity in response to asbestos.
In the experiments shown in Figure 3 the
specificity of gel-shift complexes in HTE
cells exposed to asbestos was determined.
Lane 1 in Figure 3A represents nuclear pro-
teins from HTE cells exposed to 5 pg/cm2
asbestos after incubation in DNA-binding
buffer. Lanes 2 and 3 show incubation of
nuclear proteins in DNA-binding buffer
containing a 40-fold molar excess of unla-
beled NFiB-binding oligonucleotide or an
oligonucleotide containing an AP-1 consen-
sus binding site, respectively. The appear-
ance of all complexes are abolished with use
of excess cold NFcB. The two predominant

Environmental Health Perspectives * Vol 105, Supplement 5 * September 19971 122



CELL SIGNAUNG BY ASBESTOS

AA
45 -

p65/p50

I

p50

T

4 8

Hours

p65150-t' *w*p66/50-*-

1.25 5 1.25 5 1.25 5 1.25 5

Sham Asbestos, Sham Asbestos, Sham Asbestos, Sham Asbestos,
tg/cm2 gg/cm2 gg/cm2 jtgIcm2

Figure 2. Crocidolite asbestos causes increases in p65/50 and p50 protein complexes binding to the NFxB-binding
consensus DNA sequence in HTE cells. Reproduced with permission from Janssen et al. (23). n=2 duplicate lanes
per group. All experiments were performed in duplicate. *Significantly different from sham group (p<0.05).
tSignificantly different from the 1.25 pg/cm2 asbestos group at the same time point (p< 0.05).

complexes in HTE cells, identified in
supershift assays shown in Figure 3B, com-

prise p65/50 and p50 protein subunits.
Note that in the duplicate lanes presented
in the right panel of Figure 3B, both upper
complexes are supershifted upward with use

of the p50 antibody. Although similar
trends in elevations of both gel-shift com-

plexes were noted over time in HTE cells
exposed to asbestos (Figure 2), statistical
increases (p< 0.05) were only observed in
p65/p5O. These changes were ameliorated
with preaddition of N-acetylcysteine
(NAC), an agent boosting cellular glu-
tathione levels, to HTE cells (12), which
suggests that oxidative stress caused by

asbestos may be important in increased
binding of p65/p5O and p50 complexes to

the NFKB consensus sequence. In all
studies, NAC alone was added to cells for
18 hr and diminished both crocidolite-
induced c-fos and c-jun mRNA levels and
AP-1 to DNA-binding activity.

Figure 4 presents a hypothetical
construct ofhow asbestos fibers or AOS lib-
erated from fibers or phagocytosis may ini-
tiate the NFKB signaling pathway as well as

the MAPK cascade. As emphasized in the
"Introduction," stimulation of both of these
cell signaling pathways was induced in
mesothelial cells and other cell types by
oxidant stresses including hydrogen peroxide

p50-
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Asbestos Asbestos Asbestos
+ p65 Ab + p5O Ab

Figure 3. Specificity of binding to the NFxB consensus
sequence in asbestos-exposed (5 pg/cm2 dish) HTE
cells. (A) Competitive inhibition of complex formation
in presence of cold NFicB, but not AP-1 binding

24 oligonucleotide. (B) Supershift assays using antibodies
(Ab) recognizing p65 and p50 to identify proteins in
complexes. Reproduced with permission from Janssen
et al. (23). n=2 duplicate lanes per group. All experi-
ments were performed in duplicate.

(29-31), arsenite (31,32), and chromium
(33). Based on our observations that eleva-
tions of cellular glutathione levels by
NAC can prevent both crocidolite asbestos-
induced NFxB (23) and ERK MAPK
activation (29), one might suggest that oxi-
dants contribute to initiation of both cell
signaling pathways induced by asbestos.

How AOS elaborated by asbestos may
initiate these signaling pathways is sug-

gested in recent studies using RPM cells. In
these cells, both elevations of ERKI and
ERK2 phosphorylation and increases in
ERK2 in vitro kinase activity induced by
crocidolite asbestos can be blocked by pre-
treatment of cells with suramin, an agent
causing internalization of growth factor
receptors, or by using the tyrphostin
AG 1478, a compound inhibiting phospho-
rylation of the EGFR (24). These data
suggest that interaction of fibers directly
with the EGFR or phosphorylation of the
EGFR by AOS, as has been observed in
cells after addition of hydrogen peroxide or

ultraviolet (UV) irradiation (34), is critical
to initiation of the ERK MAPK cascade by
asbestos fibers. The possibility that the
EGFR also is integral to activation of the
NFKB cascade by asbestos is currently
being explored using similar approaches in
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Figure 4. Illustration of how asbestos fibers interact with cells to elicit ERK MAPK and NFcB cascades and transcrip-
tional activation of early response genes. One mechanism of activation in mesothelial cells may be through phospho-
rylation of the EGFR.

both RPM and rat alveolar type II epithelial
(RLE) cells (35).

Silica, especially when freshly ground,
also elaborates AOS (36), and activates the
NFicB pathway in a manner similar to that
in asbestos (Driscoll et al., unpublished
data). Although this mineral has not been
examined for its ability to stimulate the
various arms of the MAPK cascade as dia-
grammed in Figure 1, it is likely that
MAPK activation may occur in certain cell
types of the respiratory tract (epithelial,
fibroblasts) that are affected in silicosis

(37). In view of observations in malignant
cells indicating that ERK activation occurs
selectively after mitogenic stimuli (38)
whereas JNK/p38 activation governs apop-
tosis occurring in response to stress (21),
we have developed dual labeling in situ
cell-imaging techniques to quantitate both
proliferation and apoptosis in RLE cells
(39) after exposure to asbestos TPA or
TNF (40). Preliminary data suggest that
these morphologic end points may reflect
patterns of ERK and JNK activation in
epithelial cells of the respiratory tract. In

brief, crocidolite asbestos at concentrations
(5 pg/cm2 dish) causing apoptosis but not
cell proliferation as determined by labeling
with an antibody to 5'-bromodeoxyuridine,
selectively stimulates the ERK pathway in
this cell type as does TPA, an agent induc-
ing apoptosis that is classically used as a pos-
itive control for ERK activation in other cell
types. In contrast, TNFa, an agent induc-
ing JNK activation, also causes dramatic cell
proliferation in RLE cells whereas asbestos
(5 pg/cm2) fails to cause increases in JNK
activity over a range of time points exam-
ined. These data are exciting in that they
suggest that ERK activation is linked to
apoptosis rather than to cell proliferation in
this cell type. Moreover, this observation is
supported by the fact that pretreatment of
RPM cells with an MEK1,2 inhibitor com-
pound, which selectively blocks ERK activa-
tion, inhibits the development of apoptosis
by asbestos (29). Thus, manipulating differ-
ent arms of the MAPK cascade using phar-
macologic inhibitors may be feasible in
controlling phenotypic outcomes of asbestos
exposure in cells of the respiratory tract.

In summary, multiple cell-signaling
pathways may be stimulated by mineral
dusts. Probable mediators in these path-
ways are oxidants that phosphorylate either
receptors on the cell surface or other signal-
ing proteins occurring upstream of tran-
scription factor interaction with DNA.
AOS may also be important in the degra-
dation of proteins in these cascades or in
the initiation of lipid peroxidation cell sig-
naling pathways yet to be characterized
after exposure of cells to minerals (41).
These experiments are fruitful areas for fur-
ther investigation into how asbestos and
other mineral dusts alter gene expression.
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