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Fig. 10 Patient-specific optical parameters measured before and after PpIX PDT treatment: (a) blood
volume fraction, (b) microvascular saturation, (c) reduced scattering coefficient at 637 nm, and (d) volume

fraction of melanocytes in the epidermis.

produced an extremely robust response. Long-term clinical out-
come response data were not part of this initial data set, and thus,
we used patient-reported pain as a surrogate correlation param-
eter, which has been shown to be roughly proportional to PpIX
fluorescence prior to illumination*’ and proportional to eryth-
ema following treatment.*® Using this metric, the PpIX fluores-
cence after 1-h ALA incubation was significantly higher (in the
aggregate) in patients reporting high pain than those reporting
low pain. This relationship was also observed for total absolute
change in fluorescence before and after light dose delivery,
though not for relative percent change. These results were con-
sistent for both blue and red light excitation. It should be noted
that VAS pain was only an implicit metric for therapeutic dose
and is also dependent on the nerve density within the treated
tissue, which was not evaluated in this study. But overall,
these data suggest that the dosimeter measurements may have
the potential to stratify patients who produced high and low
levels of PpIX after a short incubation time.

The core aspect of our new two-channel excitation fluores-
cence dosimeter that is unique within the field of ALA-PpIX
PDT monitoring is the ability to quantify PpIX originating
from different depths. A series of Monte Carlo simulations
were performed to characterize the sensitivity of red and blue
fluorescence measurements to depth distribution of PpIX in
the skin. Simulation results showed the red channel samples
PpIX from deeper locations than the blue. This result is
expected, given the increased absorption and scattering experi-
enced by blue light compared with red light in skin. The sim-
ulations also showed that the ratio of the red to blue fluorescence
was sensitive to the depth-dependent distribution of PpIX.
The ratio data from simulations normalized the red and blue
collected intensities for the case of homogenously distributed
PpIX, and changes in the normalized ratio resulted from
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changing the spatial distribution of PpIX within the modeled
tissue volume. An increased ratio of red to blue indicated
an increased contribution of PpIX from relatively deeper
locations, while a decreased ratio indicated more PpIX in the
superficial layers of the skin. The ratio of red to blue fluores-
cence signals observed in vivo was [0.23 to 2.2]. While slight
variations in this ratio may be caused by imperfect correction for
optical property effects, the data in Fig. 5 suggest that optical
property based error is likely to be 20% and is unlikely to
explain the 10-fold range of ratio values observed in patients.
Thus, the differences in the observed ratio suggest differences
in the depth-dependent distribution of PpIX among patients.
Interestingly, the clinical data showed that lower Ratigzg values,
indicating more superficial PpIX, were associated with higher
amounts of reported pain. It is important to note that patients
in this study were treated with blue light, hypothetically increas-
ing the product of PpIX concentration and light fluence in the
superficial layers of tissue. It should be noted that the number of
patients included in the ratio analysis in Fig. 10 is limited, and
robust conclusions on this topic require an expanded patient
population. Future studies will consider the potential use of
Ratigzg as a dosimetric parameter.

The white light measurements provided quantitative descrip-
tion of local vascular physiology and the changes that occur
during treatment. Comparison of the range of tissue parameters
estimated in Fig. 11 are consistent with previous descriptions of
skin tissue.*® While there were some trends observed between
changes in BVF, Sat, pain, and the PDT dose, patients showed
a large amount of variability both in pretreatment parameters
and the changes experienced during treatment. It is well under-
stood that changes in perfusion may occur dynamically during
treatment,® and sampling at discrete times before and after
treatment may, in fact, miss tissue response that occurs during
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Fig. 11 Patient-specific ratio of red to blue PplX fluorescence; * marks indicate zero PplIX. Box-plot
shows comparison of ratio with patient reporting low pain (VAS < 5) and high pain (VAS >=5).
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Fig. 12 Monte Carlo simulation data showing influence of PplIX depth distribution on the sampled depth
of fluorescence origin and the ratio of collected light intensities. Three distributions were considered:

(a) uniform PplX throughout, (b) superficial PplX, and (c) deep PpIX. The 80% fluorescence sampling
depth is reported for blue and red excitation channels, and the red/blue ratio is given for each case.

illumination. More informative descriptions of tissue response
may be found by sampling either at times during the illumina-
tion, or sampling over a window following treatment to better
characterize the regional changes to perfusion and/or edema.

The results reported here are encouraging, but require further
validation in a prospective clinical study. Assuming the dosim-
eter measurements prove to be predictive of response, additional
interventions may be applied to improve outcome, such as
extending ALA-incubation time or administering an adjuvant
to increase PpIX production. However, the initial development
and validation of the multifunction dosimeter, described in this
report, is a first step toward making clinical PDT treatments of
skin precancers (i.e., AKs) more predictable and hopefully more
controllable.
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