A PDZ-binding Motif as a Critical Determinant of Rho Guanine Exchange Factor Function and Cell Phenotype

Miaoliang Liu
Dartmouth College

Arie Horowitz
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Recommended Citation

https://digitalcommons.dartmouth.edu/facoa/3815

This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.
A PDZ-binding Motif as a Critical Determinant of Rho Guanine Exchange Factor Function and Cell Phenotype

Miaoliang Liu and Arie Horowitz

Angiogenesis Research Centre and Section of Cardiology, Dartmouth Medical School, Lebanon, NH 03756

Submitted January 3, 2006; Revised January 30, 2006; Accepted January 31, 2006

Molecular Biology of the Cell
Vol. 17, 1880–1887, April 2006

INTRODUCTION

Rho guanine exchange factors (GEFs) activate GTPases by facilitating the replacement of GDP by GTP (Erickson and Cerione, 2004). Because GEFs interact directly with their effector GTPases (Snyder et al., 2002), Rho GEF targeting determines the spatial pattern of GTPase activity. This targeting does not appear to be regulated via a common mechanism shared by most Rho GEFs, however, as different domains interacting with other proteins and phospholipids determine the cellular positioning of various members of the Rho GEF family (Rossman et al., 2005).

To date, postsynaptic density 95, disk large, Zona occludens-1 (PDZ) motif. The PDZ adaptor protein synectin bound the longer splice variant, Syx1, which was targeted to the plasma membrane in a synectin-dependent manner. The shorter variant, Syx2, was diffusely distributed in the cytoplasm. Fluorescence resonance energy transfer (FRET) imaging revealed similar differences between the spatial patterns of active RhoA in Syx1 versus Syx2-expressing cells. Expression of Syx1 augmented endothelial cell (EC) migration and tube formation, whereas Syx2 expression did not. It appears, therefore, that synectin-dependent targeting of Syx is critical to its contribution to these EC functions. Although agonist-stimulated global RhoA activity was similar in Syx1- and Syx2-expressing cells, basal RhoA activity was surprisingly higher in the latter. Out of 23 cell types, we found a significant level of endogenous Syx2 expression only in brain tumor cells, which also exhibited high basal RhoA activity. We found that the activity level of JNK, which mediates transcriptional regulation downstream of RhoA, is elevated in a Syx2-dependent manner in these cells, possibly contributing to their tumorigenicity.

MATERIALS AND METHODS

Cloning of Mouse Syx1 and Syx2 cDNA

The sequence of human KIAA0720 (NCBI accession number AB018263) was used for searching the NCBI mouse EST library. A putative full-length cDNA sequence was assembled in silico based on overlapping EST entries that spanned the entire coding sequence. Total RNA extracted (RNasey, Qiagen, Chatsworth, CA) from mouse heart ICs was used for amplifying by reverse transcriptase PCR a 2.3-kb-long cDNA fragment corresponding to the central region of the Syx cDNA with primers derived from the assembled sequence (forward: GAAAGAAGCCAAGGAGGAGACCA; reverse: CACACGTC- TTAGGGAAGGAGG). The 5' and 3' ends of the fragment were extended (5' /3' RACE, Roche, Indianapolis, IN) by RACE (5' primer: CTTTCGTCTGAGGCGCAAG; 3' primer: GTCACTCCACACCCGAG) using the same total RNA pool. 5' RACE generated a 0.6-kb fragment and 3' RACE generated two 3'
fragments of 1.1 and 1.4 kb, corresponding to the Syx1 and Syx2 splice variants, respectively. The start codon was identified by comparison between human, mouse, and rat Syx genes and by GENECAN (http://genes.mit.edu/GENSCAN.html) exon analysis. Each fragment was inserted separately into pCR2.1-TOPO (Invitrogen, Carlsbad, CA) by TA cloning and sequence verification. The 0.6-kb fragment was subcloned into the plasmid containing the 2.3-kb fragment using SalI (5') and NotI (3'). The 7' fragment containing Syx1 and Syx2 were both extended by PCR (forward primer: GCTTCCTCAGATCCCTGACTGAC; reverse primer: CGACCTGACAGCTGACAGATG-GCTCCAGGAGGAG; reverse primer: M13) in the 5' direction so as to encompass a unique BslI site present in the 3' region of the 2.3-kb fragment. This site was then used to subclone each 3' fragment into the plasmid containing the 0.6- and 2.3-kb fused fragments, producing full-length cDNAs of Syx1 and Syx2 reaching 3.8 and 4.1 kb, respectively. The cDNA sequences containing the 0.6- and 2.3-kb fused fragments, producing full-length cDNAs of Syx1 and Syx2 were approximately equal, as required for the 2ΔCt method.

We calculated the amount of either Syx1 or Syx2 mRNA copy number, using β-actin as an internal control, according to the 2ΔCt method (Livak and Schmittgen, 2001). The ratio between the mRNA copy numbers of Syx1 and Syx2 in each sample is given by 2ΔCt, where Ct is the threshold fractional cycle number. Syx1/Syx2 ratios represent the average of four amplification runs, calculated after subtracting the ratios of non-reverse-transcribed samples that were run in parallel. Validation experiments demonstrated that the amplification efficiencies of both genes, Syx1 and Syx2, and β-actin were approximately equal, as required for the 2ΔCt method.

DNA and RNA Constructs

Mouse Syx1 and Syx2 cDNA were amplified from their respective pCR2.1-TOPO constructs so as to avoid the start codon and the 3' region and to facilitate subcloning into the target plasmids between the BglII and Xhol sites (forward primer: GGTGATCACGATGATGTTGGGATG; reverse primer: CCCTCTGAGATGCAGGCAAGCCGCCGCTTCT). Syx1 and Syx2 were subcloned into N-terminus fusion versions of vectors pEYFP, pEGFP, mRFP (all from BD Biosciences, San Diego, CA), and pcdNA4/hHisMax (Invitrogen) between the BglII and BamHI sites. Syx-specific siRNA (5'-CUCACUGCUCUGCUGAG-3') was targeted to a 21-base-long sequence consisting of 12 bases at the 3' end of exon 20 and 9 at the 5' end of exon 21, thus preventing full hybridization to the Syx2 transcript. Syx2-specific siRNA (5'-CCGCGUACUGUACCUUUU-3') was targeted to a 21-base-long sequence composed of 12 bases at the 3' end of exon 20 and 9 at the 5' end of exon 21. The reverse primers (human: GCTCTCTCTGCTGAGGCAAC; rat: GCGAGC-AGTGAAGAAGGCGAGCTC; mouse: GCGGGTAGAGCGAGCTGAC) span the 3' region of exon 20 and the 5' region of exon 21. The reverse primers (human: GCTGCCTCTTGTGACAAGGC; rat: GACAGCATCCTCTTTTGGCTGAC; mouse: GCGGGTAGAGCGAGCTGAC) span the 3' region of the transcript. All siRNA oligos were synthesized and purchased from Qiagen.

Differential Reverse Transcriptase PCR of Syx1 and Syx2 mRNA

We took advantage of the splicing pattern of the Syx gene in order to design primers that amplified (Thermo-Script, Invitrogen) either 826- (human), 875- (mouse), or 875-bp (rat) fragments of Syx1 and Syx2 mRNA, corresponding to residues 1046–1061, which are shared by Syx1 and Syx2. The forward primers were used for both Syx1 and Syx2 amplification. Syx1 and Syx2 were both extended by PCR (forward primer: CTCCTCAACTCTGACTGAC; reverse primer: CTTTCGAAAGAGCAGCAACAGCCTCGACTCTGAGCACTGCACCTCAGATG-GCTCCAGGAGGAG; reverse primer: M13) in the 5' direction so as to encompass a unique BslI site present in the 3' region of the 2.3-kb fragment.

Antibodies

Chicken polyclonal antibody to mouse Syx was raised and affinity purified (Aves Labs, Tigard, OR) using a peptide (QHRKLTLAQLYRIRTT) corresponding to residues 1046–1051, which are shared by Syx1 and Syx2. The corresponding sequences in rat Syx1 and Syx2 are identical. Rabbit affinity-purified antibody to synectin was produced as described (Dance et al., 2004) and used at 1 μg/ml for immunoblot and 10 μg/ml for immunofluorescence. Rabbit antibodies for c-Jun N-terminus kinase (JNK) and phospho-JNK were from Cell Signaling Technology (Beverly, MA). Alexa-647–conjugated phalloidin was from Molecular Probes (Eugene, OR). α-VFP was purchased from BD Biosciences. Peroxidase-conjugated donkey anti-rabbit and donkey anti-chicken antibodies were from Jackson ImmunoResearch Laboratories (West Grove, PA). Phalloidin and all purchased antibodies were used at concentrations recommended by the manufacturers.

Confocal Microscopy

RFPecs were grown on fibronectin-coated (10 ng/ml, 1 h at 37°C) 35-mm plates with optical-quality 1-mm glass bottom (FluoDish, Inc., Richmond, CA) to a density of 1–2 × 10^5 cells per dish. Cells were fixed with 4% paraformaldehyde (PFA) and permeabilized with 0.2% Triton X-100 in PBS for 15 min at room temperature. After washing with PBS, cells were blocked with 1% bovine serum albumin (BSA) in PBS for 30 min. Primary antibodies were added at 1:50 dilution in blocking solution and incubated for 1 h at room temperature. After washing with PBS, secondary antibodies were added at 1:200 dilution in blocking solution and incubated for 1 h at room temperature. After washing with PBS, cells were mounted on glass slides with Vectorshield with DAPI. Images were acquired by a Leica TCS SP2 confocal microscope using a 40×/1.3 oil objective (Leica Microsystems, Wetzlar, Germany).
RFPECs, 105, were seeded per well in M199 with 0.5% FBS. Phase-contrast of Matrigel (BD Bioscience) according to the manufacturer's instructions. By OD595 measured after colorimetric detection of the total protein in the well.

0.5% bovine serum albumin. Cells treated by LPA (1 μM), an agonist of RhoA Activity. RFPECs were starved for 24 h in M199 with 0.5% FBS and then perfused in a 96-well plate over Transwell.

Cells (10^4/well) were grown in a 96-well plate over - Transwell.

Probes) by incubation for 2 h at 37°C in DMEM supplemented with 0.5% FBS. After detachment by dissociation solution (Cellstripper, Cellgro, Herndon, VA), cells in 0.25 ml were seeded in Fluoroblock (BD Biosciences, pore size, 3 μm) inserts placed in a 24-well plate. A volume of 0.75 ml medium containing Caco-2 cells (Sigma), an efficient stimulator of mouse heart EC migration, was placed in the bottom of the well. Cell migration was quantified by measuring calcein fluorescence (Synergy HT, with 485/20 and 530/25 nm filters; Bio-Tek, Winooski, VT) after a 4-h incubation at 37°C/5% CO2. Transwell was preferred over gap closure assay with mouse heart ECs because these cells did not form a well-defined advancing edge.

In Vitro Tube Formation. Twelve-well plates were coated with a 2-μm layer of Matrigel (BD Bioscience) according to the manufacturer's instructions. RFPECs, 10^5, were seeded per well in M199 with 0.5% FBS. Phase-contrast images of cells at the center of the wells were acquired 12 h after cell seeding.

RhoA Activity. RFPECs were starved for 24 h in M199 with 0.5% FBS and 0.5% bovine serum albumin. Cells treated by LPA (1 μM, 10 min at 37°C; Sigma) or PDGF (50 ng/ml, 5 min; BD Biosciences), and either dimethyl sulfoxide (DMSO) or phosphate-buffered saline, respectively, were lysed and the RhoA activity was detected either by immunoblotting or by ELISA-based kits (Cytoseek, Denver, CO) according to the manufacturer's instructions. RhoA activity was quantified either by densitometry of the immunoblotted RhoA bands, or by measuring OD492 of the ELISA samples.

JNK Phosphorylation. Cells (10^5/well) were grown in a 96-well plate overnight at 37°C/5% CO2 and then starved for 24 h (0.25% fetal calf serum, 0.5% BSA in DMEM). Cells were treated by LPA (1 μM, 10 min at 37°C; Sigma) or by DMSO (as control) for immunodetection of phospho-JNK (Thr183/Tyr185) and total JNK in each well by ELISA according to the manufacturer's instructions (CASE JNK kit, SupperArray, Bethesda, MD). Eight wells were used for each condition and cell type, four of which for the detection of phospho-JNK and four for detecting total JNK. Primary antibodies were detected by peroxidase-conjugated secondary antibody, followed by OD492 measurement (Multiscan MCC/340, Labsystems). OD492 value of each well was normalized by OD492 measured after colorimetric detection of the total protein in the well. JNK phosphorylation levels were presented as a ratio between the normalized OD492 corresponding to phospho-JNK and to total JNK.

Proliferation. GBM U87 cells, 2000 per well, were seeded in a 96-well plate and grown in DMEM supplemented with 10% FBS at 37°C/5% CO2. Cells were transfected by 10 pmol/well Syx2 or Luciferase siRNA according to the manufacturer's (X-tremeGene; Roche) instructions. The initial size of the cell population was defined as a baseline value (day 0) and quantified by measuring the OD450 value of each well was normalized by the OD450 of a colorimetric reaction, following the manufacturer's instructions (CellTiter 96 AQueous One, Promega). Similar measurements were repeated with cells grown for additional 24, 48, and 72 h.

Immunoprecipitation

Confluent RFPECs were lysed in 0.5 ml RIPA buffer supplemented with a protease inhibitor cocktail (Complete, Roche), precleared by incubation with 20 μl protein G plus/protein A-agarose (Pierce, Rockford, IL) slurry for 1 h at 4°C, and incubated with 10 μg of the indicated antibody (or 2 μl of α-VFP) and 40 μl protein G plus/protein A-agarose for 4 h at 4°C. Beads were washed six times in lysis buffer and bound proteins were eluted by boiling in 40 μl Laemmli buffer for 5 min.

Statistical Analysis

Standard deviations are shown as bars in the histograms. Differences were considered statistically significant if p ≤ 0.05 by t test.

RESULTS

Syx Is Transcribed as Two Nearly Identical Splice Variants

We found that the gene of the syxectin-binding RhoA exchange factor (Syx) initially identified by a yeast two-hybrid screen is transcribed as two splice variants. Strikingly, the amino acid sequences encoded by these variants differ only by two residues: one variant (Syx1) is 1073 amino acid long, whereas the other (Syx2) is shorter by two C-terminus residues (Figure 1A). Unlike the long splice variant, the C-terminus of the shorter one does not conform to the consensus sequence of type I PDZ-binding motif.

The Syx gene is located on mouse chromosome 4. The difference between the transcripts of the two splice variants is produced by splicing out a 261 nucleotide (nt)-long intron located between exons 20 and 21 and between the codons of residues 1071 and 1072. The resulting transcript has a length of 3867 nt and codes for a 1073-residue-long protein (Figure 1A). When the above intron is not spliced out, transcription ends at a stop codon located in exon 20 immediately after the codon for residue 1071. The corresponding transcript is 4128 nt long.

We screened various cell types in order to detect the expression levels of Syx1 and Syx2. A total of 23 normal and tumor human, mouse, and rat cell types (see Materials and Methods for the full list) were probed by reverse transcriptase PCR. Syx2 expression was low or undetectable in all normal cells and most malignant cell lines, including RFPECs (unpublished data). The only cell type that expressed Syx2 at a significant level relative to Syx1 was GBM, the most common and most malignant primary brain tumor (Stark et al., 2005). The real time PCR-measured ratios between the mRNA copy numbers of Syx1 and Syx2 in the GBM cell lines U87 and SF210 were significantly lower than in human astrocytes (Figure 1B), which we considered to be a control normal cell type. Based on these ratios, the Syx2 expression level was 9 and 2.4% in U87 and SF210 cells, respectively, of the Syx1 expression level.

Because of the minimal difference between the sequences of Syx1 and Syx2, it was not possible to raise antibodies specific to each isoform. A similarity search with the Syx cDNA sequence revealed that the human (chromosome 1, as previously reported; De Toledo et al., 2001), rat (chromosome 5), and cow genomes also contain a Syx gene with the same structure as in the mouse.

Syx Interacts with Syxectin and Myosin VI

Because Syx was initially detected as the prey of syxectin in a yeast two-hybrid assay, we sought to confirm the interaction by communoprecipitation. To begin with, we attempted to detect Syx itself in RFPEC lysate with an antibody raised against a 12-residue-long peptide corresponding to a sequence in the C-terminus of both Syx1 and Syx2. The detected band
migrated at ~120 kDa, close to the calculated 119-kDa molecular weight of Syx1 (Figure 1C). A similar-sized band was previously detected in a Western immunoblot of rat hippocampal neurons (Marx et al., 2005). Endogenous Syx was immunoprecipitated by synectin and vice versa. RFPEC lysates were immunoprecipitated (IP), resolved by SDS-PAGE and immunoblotted (IB) as indicated: lane 1, nonimmune chicken IgY; lane 2, RFPEC lysate; lane 3, anti-Syx IP; lane 4, anti-synectin IP; lane 5, anti-Syx IP; lane 6, RFPEC lysate. Arrow, synectin band; arrowhead: Syx1 band. (D) VFP-Syx1 but not VFP-Syx2 immunoprecipitated synectin. Samples were processed as in C. Lane 1, nonimmune IgG IP from lysate of VFP-Syx1-expressing RFPECs; lane 2, nonimmune IgG IP from lysate of VFP-Syx1-expressing RFPECs; lane 3, anti-Syx IP from lysate of VFP-Syx2-expressing RFPECs. Anti-Syx immunoprecipitated myo6 only from VFP-Syx1-expressing RFPECs; lane 4, anti-VFP IP from lysate of VFP-Syx2-expressing RFPECs; lane 5, anti-VFP IP from lysate of VFP-Syx1-expressing RFPECs; lane 6, RFPEC lysate; arrow, synectin band; arrowhead, myo6 band.

Syx Is Targeted in a Synectin-dependent Manner

Given that PDZ adaptor proteins frequenly regulate the targeting of their ligands (Sheng, 2001), we sought to compare the localization of Syx1 and Syx2. In quiescent RFPECs, endogenous expressed Syx, which is almost exclusively of the Syx1 isoform (real-time PCR, unpublished data), was localized in the cytoplasm (Figure 2A). LPA stimulation was accompanied by the appearance of a Syx1 perinuclear cluster, and by Syx1 targeting to the PM. In LPA-stimulated cells synectin collocated with Syx1 in both the perinuclear region and the PM, but there was no collocation of the two proteins in quiescent cells (Figure 2A). Similar to endogenous Syx1, VFP-Syx1 localization in quiescent RFPECs was cytoplasmic (Figure 2B). LPA stimulation was accompanied by an increase in the perinuclear concentration of both VFP-Syx1 and Syx2. Only VFP-Syx1, however, was targeted to the PM and to PM-adjacent clusters, similar to endogenous Syx1 (Figure 2B). VFP-Syx1 was targeted to the PM in 54% of LPA-stimulated RFPECs, whereas VFP-Syx2 was targeted to the PM in 19% of RFPECs (Figure 3). These results suggest that the PDZ-binding motif is essential for the PM targeting of activated Syx.

Conversely, we utilized heart ECs from synectin−/− mice in order to find if the absence of the adaptor protein alters Syx targeting. As in RFPECs, endogenous Syx in mouse heart ECs is predominantly of the Syx1 isoform (real-time PCR, unpublished data). In WT and synectin−/− quiescent heart ECs, Syx1 was distributed homogenously in the cytoplasm (Figure 2C). Upon LPA-stimulation a concentrated
Syx1 and Syx2 Produce Different Spatial Patterns of RhoA Activity

The differences between the localization of each Syx isoform may confer corresponding changes in the level and spatial distribution of RhoA activity. Initially, in order to assess the relative contribution of Syx1 to the overall RhoA activity level in RFPECs, we compared the results of RhoA assays of RFPECs transfected either by Syx1-specific or by control siRNA. The RhoA activation level in RFPECs, we compared the results of RhoA assays of RFPECs transfected either by Syx1-specific or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA. The RhoA activation level in RFPECs, we compared the results of RhoA assays of RFPECs transfected either by Syx1-specific or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA.

The differences between the localization of each Syx isoform may confer corresponding changes in the level and spatial distribution of RhoA activity. Initially, in order to assess the relative contribution of Syx1 to the overall RhoA activity level in RFPECs, we compared the results of RhoA assays of RFPECs transfected either by Syx1-specific or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA. The RhoA activation level in RFPECs transfected by Syx1-specific siRNA was reduced specifically or by control siRNA.

The global level of active RhoA in LPA-treated RFPECs expressing Syx1 was similar to that of Syx2-expressing cells (Figure 4B), indicating that Syx2 activates RhoA as efficiently as Syx1 in response to LPA. Surprisingly, however, the basal RhoA activity level was 70% higher in Syx2-expressing cells. The basol as well as the LPA-stimulated global levels of RhoA activity cannot account, therefore, for the higher migration rate of Syx1- versus Syx2-expressing cells.

We anticipated that the spatial patterns of RhoA activity may reflect the observed differences in the localization of each Syx isoform. For that purpose we imaged RFPECs cotransfected by either mRFP-Syx1 or mRFP-Syx2 and by a RhoA FRET probe that emits light in the YFP range only upon GTP binding to the RhoA moiety in the probe (Yoshizaki et al., 2003).

In unstimulated RFPECs expressing mRFP-Syx1, RhoA activity was low across the cells except for the PM (Figure 5A). In quiescent mRFP-Syx2–expressing cells, however, there was a higher level of active RhoA across the cell, likely reflecting the diffuse cytoplasmic distribution of Syx2 (see Figure 2B). On LPA stimulation, Syx1-expressing RFPECs exhibited highly increased RhoA activity along the PM (Figure 5B). Though the level of active cytoplasmic RhoA in Syx2-expressing RFPECs increased significantly relative to quiescent Syx2-expressing cells, the spatial pattern remained diffuse without the higher PM-associated activity seen in Syx1-expressing cells. PDGF treatment was accompanied by similar differences between the activation patterns of RhoA in Syx1- versus Syx2-expressing cells (Figure 5C).

Syx1 and Syx2 Have Contrasting Effects on EC Function

Because cell migration requires spatial and temporal coordination of GTPase activity (Fukata et al., 2003), the disparate patterns of active RhoA in Syx1- versus Syx2-expressing RFPECs could conceivably produce differences in the migration rates of each cell group.

Both unstimulated and PDGF- or LPA-treated RFPECs expressing Syx1 migrated threefold faster than vector-transfected control cells in gap closure assays (Figure 6A). Expression of Syx2, however, did not augment migration relative to vector-transfected cells. These results suggest that although the diffusely distributed Syx2 was less effective in supporting migration, it did not interfere with the function of endogenous Syx1.

Because Syx1 interacts with synectin, we tested synectin’s contribution to EC migration by transfecting Syx1-expressing RFPECs with synectin-specific siRNA. Silencing of synectin expression by more than 90% inhibited migration to an extent very similar to that of Syx1-specific siRNA (Figure 6B). We further investigated the involvement of synectin in cell migration by comparing the migration rates of ECs from hearts of WT mice to those of synectin−/− mice. ECs from WT mice migrated twice as fast as ECs of synectin−/− mice.
in response to EGF in a Transwell assay (Figure 6C). These results show that interaction with synectin is required for the contribution of Syx1 to cell migration.

In vitro tube formation or angiogenesis is a major functional marker of ECs and is regulated by RhoA (van Nieuw Amerongen et al., 2003). Similar to the effects on RFPEC migration, cells expressing Syx1 formed a continuous tubular network when grown on extracellular matrix substrate with 0.5% serum, whereas Syx2-expressing cells formed very few tubes, far less than the incomplete network formed by vector-transfected RFPECs (Figure 6D).

Syx2 Is Expressed in Brain Tumor Cells

Because we detected significant expression levels of Syx2 only in GBM cell lines, (Figure 1B), we hypothesized that this expression pattern is linked to tumorigenicity and that similar to Syx2-transfected RFPECs, the basal activity level of RhoA may be higher in GBM cells than in normal astrocytes. That, in turn, could contribute to the malignant transformation of these cells via transcription factors downstream of RhoA. Similar to Syx2-expressing RFPECs, the RhoA activity levels of LPA-treated astrocytes and GBM cells were comparable (Figure 7A), but the basal RhoA activity level was more than twofold higher in the two GBM cell lines we assayed. It appears, therefore, that even a relatively modest expression level of Syx2 (e.g., 9% of Syx1 expression level in U87 cells, Figure 1B) is sufficient to sustain elevated basal RhoA activity.

RhoA regulates the expression of the c-Jun transcription factor through a pathway separate from RhoA-dependent regulation of the actin cytoskeleton. That pathway uses JNK (Marinissen et al., 2004), which is activated upon phosphorylation of Thr183 and Tyr185 (Derijard et al., 1994). Subsequently JNK phosphorylates transcription factors bound to the c-Jun promoter (Davis, 2000), thus increasing cell proliferation. JNK phosphorylation level was significantly higher in quiescent GBM U87 cells than in quiescent astrocytes and was not further increased by LPA treatment (Figure 7B), in agreement with the possibility that the higher level of basal RhoA activity in GBM cells resulted in up-regulation of downstream transcription factors.

U87 GBM cells transfected by Syx2-specific siRNA proliferated significantly slower than cells treated by control siRNA (Figure 7C), confirming that Syx2 expression is associated with the elevated growth rate typical of malignant cells.

DISCUSSION

Previously reported functions of PDZ motifs in Rho GEFs concerned mainly targeting, as in the case of Kalirin-7 that required the PDZ motif for positioning in dendritic spines. Mutant Kalirin-7 lacking this motif was diffusely distributed in the cytoplasm (Penzes et al., 2001), similar to Syx2. The dependence of Rac1 activation by Kalirin-7 on the engagement of its PDZ-binding motif was not clear cut, however, because PSD-95 down-regulated Rac1 activation by both WT
and a Kalirin-7 mutant lacking the PDZ-binding motif. Similarly, conflicting results were reported regarding the dependence of the transforming activity of Net1 on its PDZ-binding motif (Qin et al., 2005), where a mutant lacking the PDZ-binding motif was less efficient in transforming 3T3 fibroblasts, but a splice variant with a PDZ-binding motif was similarly inefficient. A previous study where expression of a Syx1 human orthologue was shown to transform 3T3 fibroblasts used a partial clone (GEF720) lacking 160 N-terminus residues (De Toledo et al., 2001) but containing the PDZ-binding motif. This truncated version of Syx1 may have been disinhibited, however, because the N-terminus is required for the down-regulation of Syx1 (Marx et al., 2005). Therefore, this result does not necessarily reflect the transformation potential of full-length Syx1, which is likely to be lower than that of GEF720.

The failure of Syx2 expression to augment cell migration in the same manner as Syx1 suggests that the PDZ-binding motif and the interaction with synectin are required for the functional coupling of Syx to the actin cytoskeleton. A second possible consequence of the absence of a PDZ-binding motif and the diffuse distribution in the cytoplasm is reduced catalytic regulation, as indicated by the higher basal RhoA activity in Syx2-expressing RFPECs and in GBM cells. The lower regulation of Syx2 could result from better access to the cytoplasmic pool of RhoA or its inability to associate with other proteins required for regulating Syx2 itself and/or RhoA.

The association of myosin VI with the complex containing Syx1 and synectin probably links Syx1 to the actin cytoskeleton and could facilitate translocation of the complex in the retrograde direction along actin filaments (Wells et al., 1999). Because synectin is associated with endocytic vesicles (Aschenbrenner et al., 2003), the specific function of Syx1 may
involve rearrangement of the actin cytoskeleton during inward vesicle traffic. In support of this possibility, we observed collocation between Syx1 and several markers of early endosomes (unpublished data).

Possibly the most intriguing question is the biological significance of the existence of almost identical Rho GEF splice variants. Because we were able to detect a significant level of Syx2 expression only in malignant cells, we hypothesize that the less tightly regulated Syx2, which gives rise to a sustained basal level of RhoA activity, up-regulates tumorigenic transcription factors. Association between tumorigenicity and Syx2 expression is suggested also by a previous study, which reported that synectin degradation mediated via its interaction with the viral oncoprotein E6, as well as RNAi silencing of synectin, increased cell proliferation (Favre-Bonvin et al., 2005). Together with the results presented here, this initial data set suggests a novel mechanism of malignant transformation that does not involve truncation of proto-oncogenic Rho GEF (Ron et al., 1989), but rather the expression of an unmodified and loosely targeted Rho GEF splice variant.

ACKNOWLEDGMENTS

We thank Dr. M. Simons, Dartmouth Medical School, for synectin−/− mice; Dr. Michiyuki Matsuda, Osaka University, for FRET probes; Dr. TamaHasson, University of California at San Diego, for synectin and myosin VI antibodies; Dr. Mark Israel and Nathan Watson, Dartmouth Medical School; for human astrocytes and GBM cells; and Dr. Brent Harris, Dartmouth Medical School, for rat astrocytes. We thank Drs. Michael Simons, Dartmouth Medical School; Jay Baraban, Johns Hopkins University; and Anne Blangy, Centre de Recherche de Macromolecular Biochemistry, France, for sharing unpublished data. We thank Dr. Anna Salikova, Dartmouth Medical School, for help with the Transwell assay.

REFERENCES

Vol. 17, April 2006