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FIGURE 2: Deletion of FAP206 leads to loss of RS2 and associated dynein c in the 96-nm repeat. Isosurface renderings 
(A–F, K, L) and tomographic slices (G–J) show the averaged 96-nm axonemal repeats of wild type (A, C, D, G, H, K) and 
FAP206-KO (B, E, F, I, J, L) in longitudinal (A, B, D, F, H, J–L), cross-sectional (C, E, G, I), and bottom views looking 



706 | K. K. Vasudevan, K. Song, et al. Molecular Biology of the Cell

Subsequent steps were performed at 4°C. The deciliated cells 
were collected by centrifugation at 1500 × g for 5 min and twice 
at 1860 × g for 5 min. Cilia were collected by centrifugation at 
10,000 × g for 15 min. Cilia were demembranated in 20 ml of 
HMEEK (30 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 
25 mM KCl, 5 mM MgSO4, 0.1 mM EDTA, and 1.0 mM ethylene 
glycol tetraacetic acid, pH 7.4) with 1% IGEPAL CA-630 (Sigma-
Aldrich, St. Louis, MO) for 30 min. Demembranated axonemes were 
collected by centrifugation at 10,000 × g for 10 min and suspended 
in 200 μl of HMEEK buffer without detergent.

Axoneme isolation, cryo–electron tomography, 
and image processing
Axonemes were isolated from Tetrahymena strains CU428 and 
FAP206-KO as described (Wloga et al., 2008), with minimal modifi-
cations. Cells (250 ml at [3–4] × 105 cells/ml) were washed with 
10 mM Tris-HCl, pH 7.5, and suspended in 40 ml of 10 mM Tris-HCl, 
pH 7.5, 50 mM sucrose, 10 mM CaCl2, 1 mM phenylmethylsulfonyl 
fluoride, and 0.02 mg/ml aprotinin. The cells were deciliated by 
adding 700 μl of 0.5 M acetic acid and inverting the tube six times 
during 1 min. Deciliation was stopped by adding 360 μl of 1 M KOH. 

FIGURE 6: GFP-FAP206 has microtubule-binding activity in vivo. Overexpressed GFP-FAP206 associates with nonciliary 
microtubules. Cells that overexpress GFP-FAP206 transgene under the MTT1 cadmium-inducible promoter were stained 
by immunofluorescence using a mix of 12G10 monoclonal anti–α-tubulin and SG polyclonal anti-tubulin antibodies (red) 
and imaged for GFP (green) using a confocal microscope. Top, a cell before induction; middle and bottom, an 
interphase cell and a dividing cell, respectively, fixed after 3 h of transgene induction with 2.5 μg/ml CdCl2. The white 
insets magnify the intracytoplasmic microtubules in the cell body. The yellow insets magnify mature full-length cilia with 
strong GFP-FAP206 accumulation at the tips. The white arrowheads mark short (likely assembling) cilia with uniform 
distribution of GFP-FAP206. Scale bar, 20 μm.
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FIGURE 7: FAP206 interacts with CSC. (A) A Western blot of purified cilia isolated from Tetrahymena strains that are 
wild type, lack genes encoding the Tetrahymena homologues of CSC proteins (FAP61/CaM-IP3 or FAP251/CaM-IP4), or 
lack FAP206, probed with antibodies specific to FAP91/CaM-IP2 of C. reinhardtii (top; Dymek et al., 2011), 12G10 
monoclonal α-tubulin (middle), or polyglycylated tubulin (bottom). Note that the levels of the anti-FAP91/CaM-IP2 band 
are strongly reduced in the strains lacking the CSC protein homologues, indicating that the antibodies are specific to 
the Tetrahymena FAP91 homologue. Furthermore, the levels of the FAP91 homologue are strongly reduced in the strain 
lacking FAP206, indicating that axonemal assembly of FAP91 and likely other CSC components depends on the 
presence of FAP206. Images of the entire blots are shown in Supplemental Figure S1. (B) Western blot of axonemes of 
wild type and FAP206-KO probed with anti-FAP91 and 12G10 anti–α-tubulin antibodies. (C) Silver stained SDS–PAGE 
gels showing an immunoprecipitate obtained from the radial spoke-enriched supernatants of C. reinhardtii axonemes. 
The positions of known CSC components and major radial spoke proteins are marked. The two bands (boxed area) that 
migrated with an apparent molecular weight of 80 kDa were found to contain the Chlamydomonas FAP206 homologue 
(CHLREDRAFT_171124). (D) Immunoprecipitates obtained with the anti-FAP91/CaM-IP2 antibodies from the radial 
spoke–enriched supernatant of Chlamydomonas axonemes that were either wild type or spokeless pf14 mutant. Note 
the absence of the FAP206 bands, indicating that the CSC-FAP206 interaction requires RSP3 as an intermediate.
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mass spectrometry on a Thermo LTQ-Orbitrap mass spectrometer 
as described (Chittum et al., 1998; Taniguchi et al., 2002) at the 
Harvard Microchemistry and Proteomics Analysis Facility, Harvard 
University.

Immunoprecipitation of CSC in Chlamydomonas
Strain A54-e18 (nit1-1, ac17, sr1, mt+) obtained from P. Lefebvre 
(University of Minnesota, St. Paul, MN) was used as a wild type. The 
radial spokeless strain pf14 (cc1032, mt+) was obtained from the 
Chlamydomonas Genetics Center (Duke University, Durham, NC). 
Axonemal extracts were prepared, and immunoprecipitations were 
performed and separated on 7% SDS–PAGE gels according to 
Dymek and Smith (2007). Two silver-stained bands earlier desig-
nated as RSP13 were excised, subjected to in-gel trypsin digestion, 
and analyzed by LC-MS/MS on an Orbitrap Velos at the University of 
Massachusetts Medical School (Worcester, MA) mass spectrometry 
facility.

Cryo–electron tomography
Quantifoil holey carbon grids (Quantifoil Micro Tools, Jena, Ger-
many) were glow discharged and then coated with 10-nm colloidal 
gold (Sigma-Aldrich). After loading the grid in a home-made plunge 
freezer, 3 μl of axonemes and 1 μl of a 5× concentrated, 10-nm col-
loidal gold solution were applied to the grid. The grid was blotted 
for ∼2 s with a filter paper and then immediately plunge frozen in 
liquid ethane to achieve vitrification. The frozen samples were stored 
in liquid nitrogen until TEM examination.

Using a cryo-holder (Gatan, Pleasanton, CA) to maintain the 
sample at a temperature below −140°C, a vitrified sample was 
transferred into a Tecnai F30 TEM (FEI, Eindhoven, Netherlands) 
equipped with a field emission gun and a postcolumn energy filter 
(Gatan). Images were recorded at 300 keV under low-dose condi-
tions and in the zero-loss mode of the energy filter (20-eV slit 
width). Tilt series of axoneme samples were automatically recorded 
from −65 to +65º with 1.5–2.5° angular increments using SerialEM 
software (Mastronarde, 2005). The cumulative electron dose was 
restricted to ∼100 e/Å2. All data were acquired with a 2k × 2k 
charge-coupled device camera (Gatan) at −8-μm defocus and at a 
magnification of 13,500×, resulting in a pixel size of ∼1 nm.

Image processing
The 3D tomograms were reconstructed using the IMOD software 
package (Kremer et al., 1996) with fiducial alignment and weighted 
backprojection. Only tomograms of intact and noncompressed or 
mildly compressed axonemes (6–12 tomograms/strain) were further 
processed and analyzed. Subtomograms containing 96-nm axone-
mal repeats were extracted, aligned, and averaged with missing-
wedge compensation using the software package Particle Estima-
tion for Electron Tomography (PEET; Nicastro et al., 2006). The 
University of California, San Francisco, Chimera package (Pettersen 
et al., 2004) was used for 3D visualization by isosurface rendering 
and for measuring volume sizes of structural components/defects 
after normalizing the isosurface rendering threshold to the mass of 
a doublet microtubule (Heuser et al., 2009). The molecular mass 
of these volumes was estimated by assuming an average protein 
density of 1.43 g/cm3 (Quillin and Matthews, 2000). A clustering 
(unsupervised classification) approach incorporated into PEET 
(Heumann et al., 2011) was used to analyze the heterogeneity 
concerning the presence/absence of RS2, RS3, and dynein c in the 
axonemal repeats of wild-type and FAP206-KO. To focus the classifi-
cation on the structures of interest, the exam ined 3D volume was 
limited to the targeted region using masks.

Mass spectrometry analysis of the dynein-containing 
axoneme fraction
Axonemes were isolated from Tetrahymena CU428 and FAP206-
KO as described and dissolved in the lysis buffer (7 M urea, 2 M 
thiourea, 4% 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-
sulfonate, 65 mM dithiothreitol, and 2% IPG buffer, pH 3–10 non-
linear; GE Healthcare) with vigorous stirring for 30 min. To remove 
insoluble substances, the sample was centrifuged at 45,000 × g for 
1 h. Protein concentrations were determined using a 2-D Quant Kit 
(GE Healthcare). The supernatant was aliquoted and stored at 
−70°C. A total of 35 μg of axonemal protein/strain was separated 
on NuPAGE 4-12% Bis-Tris Mini Gels (Novex, Life Technologies, 
Grand Island, NY). The gels were fixed and stained with Coomassie 
blue G-250. The portion of the gel corresponding to molecular 
weights >130 kDa, which was expected to contain all dynein heavy 
chains, was excised, washed in 50% acetonitrile, and analyzed by 
microcapillary reverse-phase HPLC nano-electrospray tandem 
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