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FIGURE 3: FOXM1 ChIP-seq indicates a role for FOXM1 in the cell cycle and translation. (A) CEAS analysis of the 
overlapping FOXM1 ChIP-seq analysis shows enrichment in promoters, downstream regions, 5′UTRs, and coding exons 
relative to background. (B) Venn diagram showing the overlapping gene targets of FOXM1, B-Myb, and LIN9 (b-Myb 
and LIN9 results from Sadasivam et al., 2012). There is enrichment in cell cycle Gene Ontology (GO) terms for biological 
process (BP) and cellular component (CC) in the overlapping gene lists for FOXM1/B-Myb, FOXM1/B-Myb/LIN9, and 
FOXM1/LIN9. FOXM1 genes that do not overlap with B-Myb or LIN9 show an enrichment in the GO term translation. 
(C) Bar graph showing the percentage of FOXM1 targets per cell cycle phase. (D) Bar graph showing the percentage of 
genes in each phase that are bound by FOXM1.



3640 | G. D. Grant et al. Molecular Biology of the Cell

To represent FOXM1 binding relative to 
gene models, we show the percentage cov-
erage of different regions of each gene 
model as defined by GCA (Supplemental 
Figure S6). We then linked the genes for 
each FOXM1 ChIP-seq loci via Entrez Gene-
IDs to genes that are cell cycle regulated in 
U2OS cells. Of the 1871 unique cell cycle–
regulated genes in U2OS cells, 287 showed 
evidence of FOXM1 occupancy at their pro-
moters. Because FOXM1 is known to drive 
the expression of G2/M phase genes, we 
first examined the expression of known 
G2/M FOXM1 targets, AURKB, CCNB1, 
CCNB2, PLK1, and TOP2A, which all had 
FOXM1 bound in their promoters (Supple-
mental Figure S5). Of the 278 genes ex-
pressed in G2, 98 (35.2%, p < 0.001) were 
bound by FOXM1 in our ChIP-seq data. Of 
the 392 genes expressed in G2/M, 102 
(26%, p < 0.001) were bound by FOXM1. 
Progressing through the cell cycle, there 
were 16 M/G1 genes bound by FOXM1 out 
of 144 (11.1%; not significantly enriched 
[NS]). Surprisingly, we found a number of 
G1- and S-phase genes that were bound by 
FOXM1, including TYMS, RMI1, and replica-
tion-dependent histone genes. FOXM1 
binds to 6.1% of the genes expressed in 
G1/S (43 of 702; NS) and 7.8% of S-phase 
genes (28 of 355; NS).

Many FOXM1 target genes in different 
cell types have been reported (reviewed in 
Wierstra and Alves, 2007). Given that 
FOXM1 has roles in cell cycle progression, 
metastasis (through MMP2 and MMP9; 
Wang et al., 2008), and development in 
many cell types, we focused on FOXM1 tar-
gets in cell types that display epithelial mor-
phology. In our ChIP-seq analysis we identi-
fied the promoters of all four previously 
published FOXM1 targets in HeLa cells 
(AURKA, PLK1, CCNB1, and RACGAP1; 
Sadasivam et al., 2012). Looking at genes 
previously shown to be bound by FOXM1 
by ChIP in U2OS cells, we found five of nine 
published FOXM1 targets (Dai et al., 2007; 
Wang et al., 2007; Chen et al., 2009; Chetty 
et al., 2009; Ahmed et al., 2012).

Of the previously reported G2- or M-
phase FOXM1 target genes that were also 
cell cycle regulated in HeLa cells, 32 of 39 
(∼82%) were found in our analysis of U2OS 
cells, whereas only five of 16 (∼31%) of the 
published FOXM1 targets expressed in G1 
or S phases were identified in our analysis in 
U20S cells (Supplemental Figure S6 and 
Supplemental Table S4). Most FOXM1 ChIP-
seq target genes were cell cycle regulated 
in U2OS cells (27 of the top 30) and HeLa 
cells (28 of the top 30; Whitfield et al., 2002). 

FIGURE 4: The expression profiles of genes bound by FOXM1. The clustered U2OS and HeLa 
cell expression profiles of the 501 genes bound by FOXM1 that are cell cycle regulated in U2OS 
cells. FOXM1 transcription factor binding is shown as percentage coverage of the UCSC 
genome browser gene model as defined by GCA for each gene (see Supplemental Figure S6 for 
more detail).
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Recently it was shown that FOXM1 binds to G2/M-phase gene 
promoters via CHR elements (Chen et al., 2013), which are also 
important to both DREAM and B-Myb-MuvB complex binding 
(Sadasivam et al., 2012). Similar to the results published here 
(Figure 3B), Chen et al. (2013) show that FOXM1 binds to many of 
the same promoters as LIN9 and B-MYB and that both FOXM1 
ChIP-seq data sets are enriched for genes involved in mitosis. How-
ever, due to experimental differences, the data set presented here 
is also enriched for genes involved in translation that are not cell 
cycle regulated. Our data support the possibility that FOXM1 is 
weakly bound to a subset of genes expressed during S phase 
(Figures 6, A and B, and 7).

The genes cell cycle regulated in both HeLa and U2OS cells are 
generally bound by at least one of the cell cycle transcription factors. 
Of the 253 genes that are cell cycle regulated in U2OS and HeLa 
cells, 183 (∼72%) of the promoters are bound by at least one tran-
scription factor, 70 (∼28%) of the promoters are bound by two tran-
scription factors, and 63 (∼25%) of the promoters are bound by three 
or more. Thus each cell cycle gene may be regulated by the combi-
natorial effects of multiple cell cycle transcriptional factors. This 
would allow for very precise temporal regulation of cell cycle genes, 
as well as provide a high degree of redundancy in the system.

These data provide a catalogue of the cell cycle–regulated genes 
in U2OS cells and, along with associated transcription factor binding 
data, are available to anyone for any purpose. This will provide a 
resource for the scientific community, and the full data set is avail-
able from Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/
query/acc.cgiat) at accession number GSE52100.

MATERIALS AND METhODS
Cell culture, synchronization, and RNA preparation
HeLa and U2OS cells were passaged in a 37°C humidified incubator 
in DMEM with 10% fetal bovine serum and 100 U of penicillin–strep-
tomycin following standard protocols.

U2OS cells were synchronized using a double-thymidine proto-
col or a thymidine–nocodazole protocol. Briefly, 3.0 × 105 cells were 
plated in 16 ml of DMEM. After 24 h of growth, thymidine was 
added to a final concentration of 2.5 mM. After 18 h in thymidine 
media cells were washed twice with prewarmed CO2-equilibrated 
phosphate-buffered saline (PBS) and allowed to grow for 8 h in pre-
warmed CO2 equilibrated DMEM. Again thymidine was added to a 
final concentration of 2.5 mM for another 18 h. Cells were washed 
twice with PBS and released into DMEM. For the thymidine–
nocodazole synchronization, U2OS cells were plated (5.0 × 105 cells) 
and allowed to grow for 24 h. Thymidine (2.5 mM) was added 
for 18 h before cells were washed twice with prewarmed CO2-
equilibrated PBS before treatment with DMEM supplemented with 
100 ng/ml nocodazole for 12 h. Floating cells were collected and 
spun down, washed twice with prewarmed CO2-equilibrated PBS, 
and resuspended in prewarmed CO2-equilibrated DMEM. Non-
floating cells were washed twice with prewarmed CO2-equilibrated 
PBS and released into prewarmed CO2-equilibrated DMEM, and 
the resuspended floating cells were added back to each plate. Cells 
were collected every 2 h for a minimum of 36 h using RNeasy Plus 
Mini Kit (Qiagen, Valencia, CA). Zero-hour samples were collected 
while cells were still in arrest conditions.

Synchrony was monitored via fluorescence-activated cell sorting 
(FACS) analysis of propidium iodide–labeled cells (DartLab, Geisel 
School of Medicine at Dartmouth College) and FOXM1 phosphory-
lation state or cyclin B1 expression via Western blots (see later de-
scription). Samples were collected for Western blot analysis using 
SDS–PAGE sample buffer.

2008). Overlap of the genes identified as cell cycle regulated 
in U2OS, HeLa (Whitfield et al., 2002), and foreskin fibroblasts 
(Bar-Joseph et al., 2008) shows 142 cell cycle–regulated genes in all 
three cell types (Supplemental Table S3).

Despite the pairwise overlaps being in the 40% range, there are 
142 genes that are cell cycle regulated in all three cell types. Many 
of these are involved in the core processes of either DNA replica-
tion or mitosis, which are tightly regulated and involve a discrete 
set of genes. These overlapping genes may be “core cell cycle” 
regulators that are critical for all cell types. Recently Pena-Diaz et al. 
(2013) reported the cell cycle–regulated genes in HaCaT human 
keratinocytes. They found that of 1249 Entrez genes cell cycle reg-
ulated in this cell line, 125 genes also were cell cycle regulated in 
HeLa and foreskin fibroblasts. This is similar to the number we re-
port (142 genes) as cell cycle regulated in three different cell types. 
The inclusion of HaCat cells in our comparison of all cell types re-
duces the number of common periodic genes to 96 (Supplemental 
Figure S8 and Supplemental Table S3). These 96 genes represent 
genes involved in core cell cycle processes.

Many of the cell cycle–regulated genes in all three cell types 
have either E2F1 or FOXM1 bound at their promoters. This implies 
that these two transcription factors are responsible for the highly 
periodic expression patterns seen in either S phase (E2F1) or G2/M 
(FOXM1). Unfortunately, E2F1 does not bind the promoter of 
FOXM1, nor does FOXM1 bind the promoter of E2F1, so it appears 
that E2F1 does not directly induce FOXM1. This would imply that 
there is not a continuous transcription factor–based circuit that regu-
lates the cell cycle; instead, there is an interplay of transcriptional 
activation, phosphorylation, degradation, and sequestration (among 
other methods) that controls cell cycle regulation.

It is becoming apparent that there may be cell type–depen-
dent, cell cycle–regulated genes. As cell cycle–regulated genes are 
catalogued for different cell lines (or types), it will be interesting 
to determine which genes are cell line dependent and which 
genes are cell type dependent, and to determine with more 
precision which genes are invariant across all cycling cells. These 
results suggest that it may be informative to determine the differ-
ences in cell cycle gene expression between different cell types/
lines of the same lineage, embryonic stem cells, or induced pluri-
potent stem cells to begin to determine the changes through 
developmental lineages.

Regulation of the cell cycle gene expression program
Previous reports showed that FOXM1 is required for proper pro-
gression through mitosis due to a requirement for the FOXM1 acti-
vation of critical mitosis genes (e.g., PLK1, CDC25B, and CCNB1; 
Laoukili et al., 2005; Wonsey and Follettie, 2005). Here, via FOXM1 
ChIP-seq, we showed that not only are these genes activated by 
FOXM1, but in addition a number of other genes that are involved 
in proper mitotic progression are also activated by FOXM1. The 
number of genes that are direct FOXM1 targets implies that FOXM1 
is a regulator of G2/M-phase transcription. In addition to binding a 
large number of G2/M-phase genes, FOXM1 binds a large number 
of targets that are involved with translation, a process that is ongo-
ing throughout the cell cycle. Of interest, FOXM1 is not cell cycle 
regulated at the RNA level in U2OS cells, whereas it is regulated in 
HeLa cells. This is possibly due to cell type–specific methods of 
regulation or perhaps to U2OS cells having a relatively intact p53 
pathway whereas HeLa cells do not, due to the presence of HPV E6 
and E7 proteins (Gao et al., 2009). There is 43% overlap between 
the three S-phase clusters in HeLa cells and the S-phase cluster in 
U2OS cells.
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when randomizing by rows only. Inclusion of the Thy-Noc time 
course resulted in improved false-positive and false-negative rates, 
despite having a lower degree of synchrony than the Thy-Thy time 
courses (Supplemental Figure S9)

To account for genes that received a high Fourier score but did 
not have a sinusoidal expression pattern throughout each time 
course, we calculated autocorrelation scores (Whitfield et al., 2002, 
Eq. 5). We calculated and summed the autocorrelation scores for 
each time course, leaving 2878 genes. To remove any genes that 
had an obvious date bias from technical issues during array hybrid-
ization, we found their power spectra using the Fourier transform of 
each time course. The date-biased genes were then removed by 
projecting the power spectra onto their first two principal compo-
nents and clustered by k-means (k = 2; Supplemental Figure S2). 
Removing these genes gave us a final data set of 2830 probes. The 
2830 probes correspond to 2140 Entrez GeneIDs with 1871 unique 
gene identifiers.

ChIP-seq and analysis
FOXM1 ChIP-seq was carried out as previously described (Lupien 
et al., 2008; Grant et al., 2012) using the FOXM1 antibody sc-502 
(C20; Santa Cruz Biotechnology, Santa Cruz, CA). Briefly, asynchro-
nous HeLa cells were fixed using 1% formaldehyde before sonica-
tion to produce DNA fragment lengths of 200–600 base pairs with 
a Bioruptor (Diagenode, Sparta, NJ). Anti-FOXM1 was bound to a 
mix of Protein A and Protein G Dynabeads (Life Technologies, 
Grand Island, NY) before an 18-h incubation at 4°C with the frag-
mented DNA. Bound DNA was washed and the cross-links re-
versed before DNA purification with a QIAquick PCR purification 
kit (Qiagen). DNA concentrations were measured using Quant-iT 
PicoGreen (Life Technologies). Library construction and sequenc-
ing for each ChIP-seq run were carried out independently at the 
High Throughput Sequencing Facility at the University of North 
Carolina (Chapel Hill, NC) using an Illumina Genome Analyzer II. 
Fastq files were mapped to the human genome using Bowtie 
(version 0.12) using the “best” flag to constrain alignments to 
those with the best read quality and fewest mismatches. The first 
ChIP-seq run resulted in 17.1 million sequence reads (8.4 mapped 
sequence reads), and the second ChIP-seq run resulted in 
17.0 million reads (8.4 million mapped reads; human genome 
build Hg18). Enriched peaks were determined independently for 
each run using MACS, version 1.3 (run 1, mfold 32, p < 1.0 × 10−5; 
run 2, mfold 25, p < 1.0 × 10−5; Zhang et al., 2008). This resulted in 
5727 peaks for the first run and 2849 peaks for the second. As a 
conservative estimate of FOXM1 binding, we analyzed the inter-
section of the sequences under the peaks that were found in both 
ChIP-seq runs, resulting in 2215 shared FOXM1 genomic loci. We 
then determined the distribution of the shared FOXM1 genomic 
loci using the cis-Regulatory Element Annotation System (CEAS; 
http://liulab.dfci.harvard.edu/CEAS/; Zhang et al., 2008; Shin 
et al., 2009) implemented in Cistrome (www.cistrome.com/). Raw 
ChIP-seq data and BED files are available from GEO at accession 
number GSE52098 (part of SuperSeries GSE52100).

Real-time luciferase assays
U2OS cells were plated at ∼20–25% density in 30-mm dishes and 
allowed to grow for 24 h. After 24 h, the growth medium was re-
placed with assay medium (Phenol red–free L15 [Life Technologies], 
10% fetal bovine serum, 1% penicillin/streptomycin, 10 mM 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, and 
0.1 mM luciferin). Cells were then transfected with equal amounts of 
plasmid (typically 250 ng of each plasmid) using FuGENE 6 (Life 

Reference RNA was isolated from asynchronously growing U2OS 
cells using an RNeasy Plus Mini Kit. The same reference was used for 
all hybridization experiments.

Microarray hybridization and analysis
Microarrays were run as described previously (Grant et al., 2012). 
Briefly, cellular RNA was amplified and Cy3 (asynchronous U2OS 
RNA) or Cy5 (sample) labeled using the Quick-Amp Labeling kit 
(Agilent Technologies, Santa Clara, CA) following the manufacturer’s 
protocol, except that the reaction volumes were reduced by one-
half. Labeled cRNA was hybridized to Agilent Whole Human Ge-
nome Oligonucleotide arrays (4 × 44k) following the manufacturer’s 
protocol. Microarrays were scanned using a GenePix 4000B scanner 
(Molecular Devices, Sunnyvale, CA). Spot pixel intensities were de-
termined using GenePix Pro 5.1 software. Poor-quality spots were 
identified and flagged by hand and excluded from subsequent anal-
ysis. Arrays were stored in the University of North Carolina Microar-
ray Database (Chapel Hill, NC; UMD). The full raw microarray data 
are available from the GEO at accession number GSE50988 (part of 
SuperSeries GSE52100).

Each time course was retrieved from the UMD independently 
from each other time course with the following conditions. Only 
spots with ratio of intensity over background of >1.5 were used. 
Genes missing >30% of their data were excluded from further analy-
sis. Genes were normalized using Lowess normalization.

Identification of periodically expressed transcripts
Periodically expressed transcripts were identified using the same 
method as in Whitfield et al. (2002). Briefly, missing data were im-
puted using a k-nearest neighbors algorithm (Troyanskaya et al., 
2001) using k = 12. Then each time course was centered by remov-
ing the first eigengene (Alter et al., 2000). Imputed data were re-
moved from the data set as the last step of the analysis.

Rough estimates of the U2OS cell cycle were initially obtained 
from Western blot analysis of cell cycle–regulated phosphorylation 
of FOXM1 and FACS analysis for each time course. This estimate 
was then refined by performing a Fourier transform on each gene in 
each time course (Whitfield et al., 2002, Eqs. 1–3) with equally 
spaced values of time (every 15 min) for the estimated cell cycle 
length ±two hours.

An offset (φ; Whitfield et al., 2002, Eqs. 1 and 2) was determined 
for each time course relative to the first time course. The Fourier 
transform was then repeated for each time course using the following 
values of T and φ: Thy-Thy 1 (T = 17.65, φ = 0.0), Thy-Thy 2 (T = 18.6, 
φ = 0.0), Thy-Thy 3 (T = 18, φ = 0.0), and Thy-Noc (T = 23.95, φ = 2.3). 
The vectors for each data set were then summed and genes ranked 
by the magnitude of their combined vectors (C). To compensate for 
the imperfect match to sine or cosine curves, each gene was scaled 
by its correlation to an idealized vector. The ideal vector for each cell 
cycle phase (G1/S, S, G2, G2/M, and M/G1) was defined by the aver-
age expression profiles of the indicated genes in Figure 1. Using a 
standard Pearson correlation, each gene received a peak correlation 
score, which was its largest absolute value correlation with each of 
the ideal vectors. This peak correlation score was then used to scale 
each gene’s C, generating a periodicity score for each gene.

Randomized data were then used to set a cutoff value for the 
minimum periodicity score to be considered cell cycle regulated. 
The data were randomized 10 times either within rows only or in 
rows and columns. The full analysis pipeline was performed for each 
of these randomizations using the same parameters as for the un-
randomized data. We chose a minimum periodicity score of 2.65, 
which gave us 3568 genes with an initial false-positive rate of 3.67% 
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Technologies) following the manufacturer’s protocol. Tissue culture 
dishes were sealed with glass coverslips and silicone grease and 
transferred to the LumiCycle (Actimetrics, Wilmette, IL) at 36°C. 
Data analysis was performed with LumiCycle Analysis software 
(Actimetrics).

Western blots
Antibodies to FoxM1 C-20 (1:500) and cyclinB1 H-433 (1:2000) were 
purchased from Santa Cruz Biotechnology. Anti–glyceraldehyde-3-
phosphate dehydrogenase was purchased from American Research 
Products (Belmont, MA). Western blots were run following standard 
protocols.

Plasmid construction
FOXM1 expression vectors, the ACAP3/CENTB5, and the RPS6KB1 
promoter constructs have been described previously (Grant et al., 
2012). We obtained commercially available promoter constructs for 
PLK1 (S119035), CENPE (S118567), TOP2A (S118760), and RMI1 
(S113323) from Switchgear Genomics (Menlo Park, CA).

The FOXM1 target promoter construct, pGL3-MCM8, was 
cloned based on ChIP-seq loci as determined by MACS. Primers 
were designed using Primer 3 (Rozen and Skaletsky, 2000) to pro-
vide an amplicon length between 800 and 1000 base pairs. DNA 
fragments were amplified via PCR and cloned into Zero Blunt TOPO 
(Life Technologies) before being subcloned into pGL3-basic 
(Promega, Madison, WI) using standard methods. All plasmids were 
verified by sequencing (Molecular Biology and Proteomics Core 
Facility, Dartmouth College).

Functional annotation
Functional annotation of genes was performed using DAVID (Dennis 
et al., 2003; Huang da et al., 2009).

Cell cycle–wide binding profiles
We investigated the distribution of transcription factor target genes 
in the cell cycle. First, we identified a list of 2830 cell cycle probes in 
U2OS cells and sorted them according to their peak expression time 
in the cell cycle. Then we examined the enrichment of the target 
genes of a given transcription factor in each sliding window of the 
cell cycle. We used a window size of 30° with 10° overlap between 
neighboring windows. We used Fisher’s exact test to determine the 
significance of enrichment of target genes for a transcription factor 
in each cell cycle window.

The target genes for E2F1, E2F4, and E2F6 in HeLa cells were 
determined from ChIP-seq data generated by the ENCODE project 
(Gerstein et al., 2012). The FOXM1 target genes were determined 
from the ChIP-seq presented here.
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