Document Type

Technical Report

Publication Date


Technical Report Number



Pipelines that operate on buffers often work well to mitigate the high latency inherent in interprocessor communication and in accessing data on disk. Running a single pipeline on each node works well when each pipeline stage consumes and produces data at the same rate. If a stage might consume data faster or slower than it produces data, a single pipeline becomes unwieldy. We describe how we have extended the FG programming environment to support multiple pipelines in two forms. When a node might send and receive data at different rates during interprocessor communication, we use disjoint pipelines that send and receive on each node. When a node consumes and produces data from different streams on the node, we use multiple pipelines that intersect at a particular stage. Experimental results for two out-of-core sorting algorithms---one based on columnsort and the other a distribution-based sort---demonstrate the value of multiple pipelines.