ENGS 88 Honors Thesis (AB Students)

Degree Program


Year of Graduation


Faculty Advisor

Dr. Solomon Diamond

Document Type

Thesis (Senior Honors)

Publication Date

Spring 2021


This study aimed to analyze a novel method of processing data from electroencephalography (EEG) recordings, which implements time-domain cycle-by-cycle analysis. This "bycycle" method, developed by the Cole & Voytek laboratory, was implemented on a EEG dataset of children with and without Phelan-McDermid Syndrome in the hopes of uncovering network-level explanations for the genetic disorder. A supplemental Python pipeline was developed to organize and visualize the data. This led to the discovery of group-level differences in measures of cycle symmetry in alpha band waves over the sensorimotor electrodes. Through the same pipeline, the bycycle tool was validated as a sound EEG analysis method that may complement Fourier-based analyses.