Document Type


Publication Date


Publication Title

Proceedings of the National Academy of Sciences of the United States of America


In visual masking, visible targets are rendered invisible by modifying the context in which they are presented, but not by modifying the targets themselves. Here, we localize the neuronal correlates of visual awareness in the human brain by using visual masking illusions. We compare monoptic visual masking activation, which we find within all retinotopic visual areas, with dichoptic masking activation, which we find only in those retinotopic areas downstream of V2. Because monoptic and dichoptic masking are equivalent in magnitude perceptually, the present results establish a lower bound for maintenance of visual awareness of simple unattended targets. Moreover, we find that awareness-correlated circuits for simple targets are restricted to the occipital lobe. This finding provides evidence of an upper boundary in the visual hierarchy for visual awareness of simple unattended targets, thus constraining the location of circuits that maintain the visibility of simple targets to occipital areas beyond V1/V2.