Document Type

Article

Publication Date

5-11-2010

Publication Title

Proceedings of the National Academy of Sciences of the United States of America

Abstract

In this article we outline an approach to index theory on the basis of methods of noncommutative topology. We start with an explicit index theorem for second-order differential operators on 3-manifolds that are Fredholm but not elliptic. This low-brow index formula is expressed in terms of winding numbers. We then proceed to show how it is derived as a special case of an index theorem for hypoelliptic operators on contact manifolds. Finally, we discuss the noncommutative topology that is employed in the proof of this theorem. The article is intended to illustrate that noncommutative topology can be a powerful tool for proving results in classical analysis and geometry.

DOI

10.1073/pnas.1003155107

Share

COinS