Document Type


Publication Date


Publication Title

Proceedings of the National Academy of Sciences of the United States of America


Thayer School of Engineering


The up-regulation of cell surface receptors has become a central focus in personalized cancer treatment; however, because of the complex nature of contrast agent pharmacokinetics in tumor tissue, methods to quantify receptor binding in vivo remain elusive. Here, we present a dual-tracer optical technique for noninvasive estimation of specific receptor binding in cancer. A multispectral MRI-coupled fluorescence molecular tomography system was used to image the uptake kinetics of two fluorescent tracers injected simultaneously, one tracer targeted to the receptor of interest and the other tracer a nontargeted reference. These dynamic tracer data were then fit to a dual-tracer compartmental model to estimate the density of receptors available for binding in the tissue. Applying this approach to mice with deep-seated gliomas that overexpress the EGF receptor produced an estimate of available receptor density of 2.3 ± 0.5 nM (n = 5), consistent with values estimated in comparative invasive imaging and ex vivo studies.



Original Citation

Davis SC, Samkoe KS, Tichauer KM, Sexton KJ, Gunn JR, Deharvengt SJ, Hasan T, Pogue BW. Dynamic dual-tracer MRI-guided fluorescence tomography to quantify receptor density in vivo. Proc Natl Acad Sci U S A. 2013 May 28;110(22):9025-30. doi: 10.1073/pnas.1213490110. Epub 2013 May 13. PMID: 23671066; PMCID: PMC3670304.