Document Type

Article

Publication Date

10-20-2006

Publication Title

New Journal of Physics

Abstract

The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false signals. We also propose a geometry-independent parameterization of all data in terms of the measurement of the constant c. Any Casimir force measurement should lead, once all corrections are taken into account, to a determination of the constant c which, in order to assess the accuracy of the measurement, can be compared with its more precise value known through microscopic measurements. Although the last decade of experiments has resulted in solid demonstrations of the Casimir force, the situation is not conclusive with respect to being able to discover new physics. Future experiments and novel phenomenological analysis will be necessary to discover non-Newtonian forces or to push the window for their possible existence into regions of the parameter space which theoretically appear unnatural.

DOI

10.1088/1367-2630/8/10/237

Share

COinS