Document Type

Article

Publication Date

5-20-2011

Publication Title

Physical Review D - Particles, Fields, Gravitation, and Cosmology

Abstract

We investigate the nonlinear dynamics of hybrid inflation models, which are characterized by two real scalar fields interacting quadratically. We start by solving numerically the coupled Klein-Gordon equations in static Minkowski spacetime, searching for possible coherent structures. We find long-lived, localized configurations, which we identify as a new kind of oscillon. We demonstrate that these two-field oscillons allow for “excited” states with much longer lifetimes than those found in previous studies of single-field oscillons. We then solve the coupled field equations in an expanding Friedmann-Robertson-Walker spacetime, finding that as the field responsible for inflating the Universe rolls down to oscillate about its minimum, it triggers the formation of long-lived two-field oscillons, which can contribute up to 20% of the total energy density of the Universe. We show that these oscillons emerge for a wide range of parameters consistent with WMAP 7-year data. These objects contain total energy of about 25×1020  GeV, localized in a region of approximate radius 6×10−26  cm. We argue that these structures could have played a key role during the reheating of the Universe.

DOI

10.1103/PhysRevD.83.096010

Share

COinS