Document Type


Publication Date


Publication Title

Frontiers in Psychology


Department of Psychological and Brain Sciences


Natural scenes provide important affective cues for observers to avoid danger. From an adaptationist perspective, such cues affect the behavior of the observer and shape the evolution of the observer’s response. It is evolutionarily significant for individuals to extract affective information from the environment as quickly and as efficiently as possible. However, the nearly endless variations in physical appearance of natural scenes present a fundamental challenge for perceiving significant visual information. How image-level properties, such as contrast and color, influence the extraction of affective information leading to subjective emotional perception is unclear. On the one hand, studies have shown that visual perception and emotional perception seem to interact with each other at the earliest stages in cortical processing. On the other hand, it is important for high-level subjective ratings to be invariant to low-level visual properties. Using a psychophysical approach and signal detection theory (SDT), we tested how contrast and color influenced fearfulness ratings of a set of natural scene pictures that varied in contents and in levels of fearfulness. Image contrast influenced perceptual sensitivity but not the decision criterion of fearfulness rating, whereas color affected the decision criterion but not perceptual sensitivity. These results show that different low-level visual features contribute independently to sensitivity or decision criterion in affective perception, suggesting distinct interactions between visual cognition and affective processing. Specifically, our naturalistic approach using a novel stimulus set, combined with SDT, has demonstrated two dissociable types of cognitive mechanisms underlying how image-level properties leverage the extraction of affective information in natural vision.



Included in

Psychology Commons