Document Type

Article

Publication Date

4-16-2015

Publication Title

Europhysics Letters (EPL)

Abstract

We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s -wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support individual Majorana pairs. In the first approach, a suitable modulation of the chemical potential simultaneously induces Majorana flat bands and dynamically activates a pre-existing chiral symmetry which is responsible for their protection. In the second approach, the application of effective parity kicks dynamically generates a desired chiral symmetry by suppressing chirality- breaking terms in the static Hamiltonian. Our results demonstrate how the use of time-dependent control enlarges the range of possibilities for realizing gapless topological superconductivity, potentially enabling access to topological states of matter that have no known equilibrium counterpart.

DOI

10.1209/0295-5075/110/17004

Included in

Physics Commons

Share

COinS