Alcohol discrimination and preferences in two species of nectar-feeding primate

Samuel R. Gochman, Dartmouth College
Michael B. Brown, Dartmouth College
Nathaniel J. Dominy, Dartmouth College

Abstract

Recent reports suggest that dietary ethanol, or alcohol, is a supplemental source of calories for some primates. For example, slow lorises (Nycticebus coucang) consume fermented nectars with a mean alcohol concentration of 0.6% (range: 0.0-3.8%). A similar behaviour is hypothesized for aye-ayes (Daubentonia madagascariensis) based on a single point mutation (A294V) in the gene that encodes alcohol dehydrogenase class IV (ADH4), the first enzyme to catabolize alcohol during digestion. The mutation increases catalytic efficiency 40-fold and may confer a selective advantage to aye-ayes that consume the nectar of Ravenala madagascariensis. It is uncertain, however, whether alcohol exists in this nectar or whether alcohol is preferred or merely tolerated by nectarivorous primates. Here, we report the results of a multiple-choice food preference experiment with two aye-ayes and a slow loris. We conducted observer-blind trials with randomized, serial dilutions of ethanol (0-5%) in a standard array of nectar-simulating sucrose solutions. We found that both species can discriminate varying concentrations of alcohol; and further, that both species prefer the highest available concentrations. These results bolster the hypothesized adaptive function of the A294V mutation in ADH4, and a connection with fermented foods, both in aye-ayes and the last common ancestor of African apes and humans.