Document Type


Publication Date


Publication Title

Journal of Biomedical Optics


Thayer School of Engineering


We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only on surface discretization in order to reconstruct quantitative values of total hemoglobin (HbT), oxygen saturation, water, and scatter. The technique was validated in experimental measurements from heterogeneous breast-shaped phantoms with known values and applied to a total of seven subjects comprising six healthy individuals and one participant with cancer imaged at two time points during neoadjuvant chemotherapy. Using experimental measurements from a heterogeneous breast phantom, BEM for IG-NIRS produced accurate values for HbT in the inclusion with a <3% error. Healthy breast tissues showed higher HbT and water in fibroglandular tissue than in adipose tissue. In a subject with cancer, the tumor showed higher HbT compared to the background. HbT in the tumor was reduced by 9 µM during treatment. We conclude that 3-D MRI-NIRS with BEM provides quantitative and functional characterization of breast tissue in vivo through measurement of hemoglobin content. The method provides potentially complementary information to DCE-MRI for tumor characterization.



Original Citation

Srinivasan S, Carpenter CM, Ghadyani HR, Taka SJ, Kaufman PA, Diflorio-Alexander RM, Wells WA, Pogue BW, Paulsen KD. Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method. J Biomed Opt. 2010 Nov-Dec;15(6):061703. doi: 10.1117/1.3499419. PMID: 21198151; PMCID: PMC3017573.