Document Type

Article

Publication Date

8-1-1985

Publication Title

Journal of Clinical Investigation

Abstract

Physiologic levels of 3,3',5'-triiodothyronine (rT3) are generally believed to have minimal metabolic effects in the pituitary gland and other tissues. In the present studies, the regulatory role of rT3 and other thyroid hormones on iodothyronine 5'-deiodinase (I5'D) activity was studied in a growth hormone-producing rat pituitary tumor cell line (GH3 cells). I5'D activity was thiol-dependent and displayed nonlinear reaction kinetics suggesting the presence of two enzymatic processes, one having a low Michaelis constant (Km for thyroxine [T4] of 2 nM) and a second with a high Km value (0.9 microM). Growth of cells in hormone-depleted medium resulted in a two- to 3.5-fold increase in low Km I5'D activity (P less than 0.001). The addition of thyroid hormones to the culture medium resulted in a rapid, dose-dependent inhibition of low Km I5'D activity with the following order of analogue potency: rT3 greater than or equal to T4 greater than 3,5,3'-triiodothyronine (T3). Using serum-free culture conditions, rT3 was approximately 50 times more active than T3. These inhibitory effects were noted within 15 min of hormone addition and could not be attributed to substrate competition with T4. These findings suggest that the control of T4 to T3 conversion by thyroid hormones in the anterior pituitary gland is mediated by a unique cellular mechanism that is independent of the nuclear T3 receptor; and under some circumstances, rT3 may play a regulatory role in controlling this enzymatic process.

DOI

10.1172/JCI112049

Share

COinS