Document Type

Article

Publication Date

5-4-2012

Publication Title

Journal of Biomedical Optics

Abstract

Multifrequency (0 to 0.3  mm−1), multiwavelength (633, 680, 720, 800, and 820 nm) spatial frequency domain imaging (SFDI) of 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) was used to recover absorption, scattering, and fluorescence properties of glioblastoma multiforme spheroids in tissue-simulating phantoms and in vivo in a mouse model. Three-dimensional tomographic reconstructions of the frequency-dependent remitted light localized the depths of the spheroids within 500 μm, and the total amount of PpIX in the reconstructed images was constant to within 30% when spheroid depth was varied. In vivo tumor-to-normal contrast was greater than ∼ 1.5 in reduced scattering coefficient for all wavelengths and was ∼ 1.3 for the tissue concentration of deoxyhemoglobin (ctHb). The study demonstrates the feasibility of SFDI for providing enhanced image guidance during surgical resection of brain tumors.

DOI

10.1117/1.JBO.17.5.056008

Share

COinS