Document Type

Article

Publication Date

12-1-2021

Publication Title

Nature Communications

Department

Thayer School of Engineering

Abstract

Motile plant structures such as Mimosa pudica leaves, Impatiens glandulifera seedpods, and Dionaea muscipula leaves exhibit fast nastic movements in a few seconds or less. This motion is stimuli-independent mechanical movement following theorema egregium rules. Artificial analogs of tropistic motion in plants are exemplified by shape-morphing systems, which are characterized by high functional robustness and resilience for creating 3D structures. However, all shape-morphing systems developed so far rely exclusively on continuous external stimuli and result in slow response. Here, we report a Gaussian-preserved shape-morphing system to realize ultrafast shape morphing and non-volatile reconfiguration. Relying on the Gaussian-preserved rules, the transformation can be triggered by mechanical or thermal stimuli within a microsecond. Moreover, as localized energy minima are encountered during shape morphing, non-volatile configuration is preserved by geometrically enhanced rigidity. Using this system, we demonstrate a suite of electronic devices that are reconfigurable, and therefore, expand functional diversification.

DOI

10.1038/s41467-020-20843-4

Original Citation

Tian, Z., Xu, B., Wan, G. et al. Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for dual-functional electronic devices. Nat Commun 12, 509 (2021). https://doi.org/10.1038/s41467-020-20843-4

COinS