Document Type
Technical Report
Publication Date
3-29-1996
Technical Report Number
PCS-TR95-263
Abstract
Phenomenal improvements in the computational performance of multiprocessors have not been matched by comparable gains in I/O system performance. This imbalance has resulted in I/O becoming a significant bottleneck for many scientific applications. One key to overcoming this bottleneck is improving the performance of parallel file systems.
The design of a high-performance parallel file system requires a comprehensive understanding of the expected workload. Unfortunately, until recently, no general workload studies of parallel file systems have been conducted. The goal of the CHARISMA project was to remedy this problem by characterizing the behavior of several production workloads, on different machines, at the level of individual reads and writes. The first set of results from the CHARISMA project describe the workloads observed on an Intel iPSC/860 and a Thinking Machines CM-5. This paper is intended to compare and contrast these two workloads for an understanding of their essential similarities and differences, isolating common trends and platform-dependent variances. Using this comparison, we are able to gain more insight into the general principles that should guide parallel file-system design.
Dartmouth Digital Commons Citation
Nieuwejaar, Nils; Kotz, David; Purakayastha, Apratim; Ellis, Carla Schlatter; and Best, Michael, "File-Access Characteristics of Parallel Scientific Workloads" (1996). Computer Science Technical Report PCS-TR95-263. https://digitalcommons.dartmouth.edu/cs_tr/237
Comments
See also the related papers from Supercomputing '94, IEEE Parallel and Distributed Technology, and IPPS '95.