Document Type
Technical Report
Publication Date
6-2014
Technical Report Number
TR2014-757
Abstract
Mesh editing software is continually improving allowing more detailed meshes to be create efficiently by skilled artists. Many of these are interested in sharing not only the final mesh, but also their whole workflows both for creating tutorials as well as for showcasing the artist's talent, style, and expertise. Unfortunately, while creating meshes is improving quickly, sharing editing workflows remains cumbersome since time-lapsed or sped-up videos remain the most common medium. In this paper, we present 3DFlow, an algorithm that computes continuous summarizations of mesh editing workflows. 3DFlow takes as input a sequence of meshes and outputs a visualization of the workflow summarized at any level of detail. The output is enhanced by highlighting edited regions and, if provided, overlaying visual annotations to indicated the artist's work, e.g. summarizing brush strokes in sculpting. We tested 3DFlow with a large set of inputs using a variety of mesh editing techniques, from digital sculpting to low-poly modeling, and found 3DFlow performed well for all. Furthermore, 3DFlow is independent of the modeling software used since it requires only mesh snapshots, using additional information only for optional overlays. We open source 3DFlow for artists to showcase their work and release all our datasets so other researchers can improve upon our work.
Dartmouth Digital Commons Citation
Denning, Jonathan D. and Pellacini, Fabio, "3DFlow: Continuous Summarization of Mesh Editing Workflows" (2014). Computer Science Technical Report TR2014-757. https://digitalcommons.dartmouth.edu/cs_tr/350