Author ORCID Identifier

Date of Award

Summer 7-27-2023

Document Type

Thesis (Ph.D.)

Department or Program

Engineering Sciences

First Advisor

Kofi M. Odame


Prostate cancer is the second most common cancer in the United States. It is typically treated by surgically excising the cancerous section of the prostate. Because there is not always a visible distinction between the healthy and cancerous sections, surgery often leaves some cancerous tissue behind. This is referred to as a positive surgical margin and it requires adjuvant treatment with adverse side effects. Electrical impedance tomography (EIT) is a low-cost low-form-factor method that can be used to assess surgical marginal intraoperatively to ensure that no cancerous tissue is left behind. EIT-based surgical margin assessment works on the principle that the electrical properties of cancerous tissue are different from those of healthy tissue. These differences are small at lower frequencies but become more pronounced at frequencies of 1 MHz and higher. Unfortunately, previous EIT solutions for surgical marginal assessment have been limited to operating frequencies of less than 1 MHz. This thesis presents a custom application-specific integrated circuit (ASIC) analog front end for performing EIT with a signal-to-noise ratio of 75 dB up to an operating frequency of 10 MHz. The custom ASIC was integrated into a 16-electrode EIT system for surgical marginal assessment. The entire system was tested on a saline phantom with a 2 mm bead that represented a cancerous lesion. The EIT system produced single-frequency and multi-frequency images showing the presence of the inclusion.