Date of Award


Document Type

Thesis (Ph.D.)


Department of Computer Science

First Advisor

Amit Chakrabarti


Communication Complexity represents one of the premier techniques for proving lower bounds in theoretical computer science. Lower bounds on communication problems can be leveraged to prove lower bounds in several different areas. In this work, we study three different communication complexity problems. The lower bounds for these problems have applications in circuit complexity, wireless sensor networks, and streaming algorithms. First, we study the multiparty pointer jumping problem. We present the first nontrivial upper bound for this problem. We also provide a suite of strong lower bounds under several restricted classes of protocols. Next, we initiate the study of several non-monotone functions in the distributed functional monitoring setting and provide several lower bounds. In particular, we give a generic adversarial technique and show that when deletions are allowed, no nontrivial protocol is possible. Finally, we study the Gap-Hamming-Distance problem and give tight lower bounds for protocols that use a constant number of messages. As a result, we take a well-known lower bound for one-pass streaming algorithms for a host of problems and extend it so it applies to streaming algorithms that use a constant number of passes.


Originally posted in the Dartmouth College Computer Science Technical Report Series, number TR2011-699.