Document Type

Article

Publication Date

11-15-2010

Publication Title

Molecular and Cellular Biology

Department

Geisel School of Medicine

Abstract

Tumor necrosis factor alpha (TNF-α) is a critical mediator of inflammation, and its production is tightly regulated, with control points operating at nearly every step of its biosynthesis. We sought to identify uncharacterized TNF-α 3' untranslated region (3'UTR)-interacting proteins utilizing a novel screen, termed the RNA capture assay. We identified CARHSP1, a cold-shock domain-containing protein. Knockdown of CARHSP1 inhibits TNF-α protein production in lipopolysaccharide (LPS)-stimulated cells and reduces the level of TNF-α mRNA in both resting and LPS-stimulated cells. mRNA stability assays demonstrate that CARHSP1 knockdown decreases TNF-α mRNA stability from a half-life (t(1/2)) of 49 min to a t(1/2) of 22 min in LPS-stimulated cells and from a t(1/2) of 29 min to a t(1/2) of 24 min in resting cells. Transfecting CARHSP1 into RAW264.7 cells results in an increase in TNF-α 3'UTR luciferase expression in resting cells and CARHSP1 knockdown LPS-stimulated cells. We examined the functional effect of inhibiting Akt, calcineurin, and protein phosphatase 2A and established that inhibition of Akt or calcineurin but not PP2A inhibits CARHSP1 function. Subcellular analysis establishes CARHSP1 as a cytoplasmic protein localizing to processing bodies and exosomes but not on translating mRNAs. We conclude CARHSP1 is a TNF-α mRNA stability enhancer required for effective TNF-α production, demonstrating the importance of both stabilization and destabilization pathways in regulating the TNF-α mRNA half-life.

DOI

10.1128/MCB.00775-10

Original Citation

Pfeiffer JR, McAvoy BL, Fecteau RE, Deleault KM, Brooks SA. CARHSP1 is required for effective tumor necrosis factor alpha mRNA stabilization and localizes to processing bodies and exosomes. Mol Cell Biol. 2011 Jan;31(2):277-86. doi: 10.1128/MCB.00775-10. Epub 2010 Nov 15. PMID: 21078874; PMCID: PMC3019981.

COinS