Document Type

Article

Publication Date

4-1992

Publication Title

Molecular and Cellular Biology

Department

Department of Biological Sciences

Abstract

Serine hydroxymethyltransferase (SHMT) occupies a central position in one-carbon (C1) metabolism, catalyzing the reaction of serine and tetrahydrofolate to yield glycine and 5,10-methylenetetrahydrofolate. Methylenetetrahydrofolate serves as a donor of C1 units for the synthesis of numerous compounds, including purines, thymidylate, lipids, and methionine. We provide evidence that the formate (for) locus of Neurospora crassa encodes cytosolic SHMT. The for+ gene was localized to a 2.8-kb BglII fragment by complementation (restoration to formate-independent growth) of a strain carrying a recessive for allele, which confers a growth requirement for formate. The for+ gene encodes a polypeptide of 479 amino acids which shows significant similarity to amino acid sequences of SHMT from bacterial and mammalian sources (47 and 60% amino acid identity, respectively). The for+ mRNA has several different start and stop sites. The abundance of for+ mRNA increased in response to amino acid imbalance induced by glycine supplementation, suggesting regulation by the N. crassa cross-pathway control system, which is analogous to general amino acid control in Saccharomyces cerevisiae. This was confirmed by documenting that for+ expression increased in response to histidine limitation (induced by 3-amino-1,2,4-triazole) and that this response was dependent on the presence of a functional cross-pathway control-1 (cpc-1) gene, which encodes CPC1, a positively acting transcription factor. There are at least five potential CPC1 binding sites upstream of the for+ transcriptional start, as well as one that exactly matches the consensus CPC1 binding site in the first intron of the for+ gene.

Original Citation

McClung CR, Davis CR, Page KM, Denome SA. Characterization of the formate (for) locus, which encodes the cytosolic serine hydroxymethyltransferase of Neurospora crassa. Mol Cell Biol. 1992;12(4):1412-1421. doi:10.1128/mcb.12.4.1412

Share

COinS