Document Type
Article
Publication Date
12-15-2015
Publication Title
Translational Psychiatry
Department
Geisel School of Medicine
Abstract
Binge eating (BE) is a difficult-to-treat behavior with high relapse rates, thus complicating several disorders including obesity. In this study, we tested the effects of high-frequency deep brain stimulation (DBS) in a rodent model of BE. We hypothesized that BE rats receiving high-frequency DBS in the nucleus accumbens (NAc) core would have reduced binge sizes compared with sham stimulation in both a 'chronic BE' model as well as in a 'relapse to chronic BE' model. Male Sprague-Dawley rats (N=18) were implanted with stimulating electrodes in bilateral NAc core, and they received either active stimulation (N=12) or sham stimulation (N=6) for the initial chronic BE experiments. After testing in the chronic BE state, rats did not engage in binge sessions for 1 month, and then resumed binge sessions (relapse to chronic BE) with active or sham stimulation (N=5-7 per group). A significant effect of intervention group was observed on binge size in the chronic BE state, but no significant difference between intervention groups was observed in the relapse to chronic BE experiments. This research, making use of both a chronic BE model as well as a relapse to chronic BE model, provides data supporting the hypothesis that DBS of the NAc core can decrease BE. Further research will be needed to learn how to increase the effect size and decrease deep brain stimulation-treatment outcome variability across the continuum of BE behavior.
DOI
10.1038/tp.2015.197
Dartmouth Digital Commons Citation
Doucette, W. T.; Khokhar, J. Y.; and Green, A. I., "Nucleus Accumbens Deep Brain Stimulation in a Rat Model of Binge Eating" (2015). Dartmouth Scholarship. 1364.
https://digitalcommons.dartmouth.edu/facoa/1364