Document Type
Article
Publication Date
1-26-2010
Publication Title
Proceedings of the National Academy of Sciences of the United States of America
Department
Department of Computer Science
Abstract
Recently, statistical techniques have been used to assist art historians in the analysis of works of art. We present a novel technique for the quantification of artistic style that utilizes a sparse coding model. Originally developed in vision research, sparse coding models can be trained to represent any image space by maximizing the kurtosis of a representation of an arbitrarily selected image from that space. We apply such an analysis to successfully distinguish a set of authentic drawings by Pieter Bruegel the Elder from another set of well-known Bruegel imitations. We show that our approach, which involves a direct comparison based on a single relevant statistic, offers a natural and potentially more germane alternative to wavelet-based classification techniques that rely on more complicated statistical frameworks. Specifically, we show that our model provides a method capable of discriminating between authentic and imitation Bruegel drawings that numerically outperforms well-known existing approaches. Finally, we discuss the applications and constraints of our technique.
DOI
10.1073/pnas.0910530107
Original Citation
Hughes JM, Graham DJ, Rockmore DN. Quantification of artistic style through sparse coding analysis in the drawings of Pieter Bruegel the Elder. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1279-83. doi: 10.1073/pnas.0910530107. Epub 2010 Jan 5. PMID: 20080588; PMCID: PMC2824352.
Dartmouth Digital Commons Citation
Hughes, James M.; Graham, Daniel J.; and Rockmore, Daniel N., "Quantification of Artistic Style through Sparse Coding Analysis in the Drawings of Pieter Bruegel the Elder" (2010). Dartmouth Scholarship. 1486.
https://digitalcommons.dartmouth.edu/facoa/1486
Included in
Arts and Humanities Commons, Computer Sciences Commons, Mathematics Commons, Statistics and Probability Commons