Kernel-Based Regularized Least Squares in R (KRLS) and Stata (krls)

Document Type

Article

Publication Date

7-1-2017

Publication Title

Journal of Statistical Software

Department

Department of Government

Additional Department

Quantitative Social Science Program

Abstract

The Stata package krls as well as the R package KRLS implement kernel-based regularized least squares (KRLS), a machine learning method described in Hainmueller and Hazlett (2014) that allows users to tackle regression and classification problems without strong functional form assumptions or a specification search. The flexible KRLS estimator learns the functional form from the data, thereby protecting inferences against misspecification bias. Yet it nevertheless allows for interpretability and inference in ways similar to ordinary regression models. In particular, KRLS provides closed-form estimates for the predicted values, variances, and the pointwise partial derivatives that characterize the marginal effects of each independent variable at each data point in the covariate space. The method is thus a convenient and powerful alternative to ordinary least squares and other generalized linear models for regression-based analyses.

DOI

10.18637/jss.v079.i03

Share

COinS