Document Type
Article
Publication Date
12-22-2015
Publication Title
Proceedings of the National Academy of Sciences of the United States of America
Department
Geisel School of Medicine
Abstract
Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (∼25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length.
DOI
10.1073/pnas.1521918112
Dartmouth Digital Commons Citation
Emerson, Jillian M.; Bartholomai, Bradley M.; Ringelberg, Carol S.; Baker, Scott E.; Loros, Jennifer; and Dunlap, Jay, "Period-1 Encodes an ATP-Dependent RNA Helicase that Influences Nutritional Compensation of the Neurospora Circadian Clock" (2015). Dartmouth Scholarship. 1667.
https://digitalcommons.dartmouth.edu/facoa/1667