Document Type
Article
Publication Date
3-31-2014
Publication Title
Monthly Notices of the Royal Astronomical Society
Department
Department of Physics and Astronomy
Abstract
We investigate the process of rapid star formation quenching in a sample of 12 massive galaxies at intermediate redshift (z~0.6) that host high-velocity ionized gas outflows (v>1000 km/s). We conclude that these fast outflows are most likely driven by feedback from star formation rather than active galactic nuclei (AGN). We use multiwavelength survey and targeted observations of the galaxies to assess their star formation, AGN activity, and morphology. Common attributes include diffuse tidal features indicative of recent mergers accompanied by bright, unresolved cores with effective radii less than a few hundred parsecs. The galaxies are extraordinarily compact for their stellar mass, even when compared with galaxies at z~2-3. For 9/12 galaxies, we rule out an AGN contribution to the nuclear light and hypothesize that the unresolved core comes from a compact central starburst triggered by the dissipative collapse of very gas-rich progenitor merging disks. We find evidence of AGN activity in half the sample but we argue that it accounts for only a small fraction (<10%) of the total bolometric luminosity. We find no correlation between AGN activity and outflow velocity and we conclude that the fast outflows in our galaxies are not powered by on-going AGN activity, but rather by recent, extremely compact starbursts.
DOI
10.1093/mnras/stu636
Dartmouth Digital Commons Citation
Sell, P. H.; Tremonti, C. A.; Hickox, R. C.; and Diamond-Stanic, A. M., "Massive Compact Galaxies with High-Velocity Outflows: Morphological Analysis and Constraints on AGN Activity" (2014). Dartmouth Scholarship. 1832.
https://digitalcommons.dartmouth.edu/facoa/1832