Document Type

Article

Publication Date

5-20-2016

Publication Title

Physical Review A - Atomic, Molecular, and Optical Physics

Department

Department of Physics and Astronomy

Abstract

Adiabatic pulses are used extensively to enable robust control of quantum operations. We introduce an approach to adiabatic control that uses the superadiabatic quality factor as a performance metric to design robust, high-fidelity pulses. This approach permits the systematic design of quantum control schemes to maximize the adiabaticity of a unitary operation in a particular time interval given the available control resources. The interplay between adiabaticity, fidelity, and robustness of the resulting pulses is examined for the case of single-qubit inversion, and superadiabatic pulses are demonstrated to have improved robustness to control errors. A numerical search strategy is developed to find a broader class of adiabatic operations, including multiqubit adiabatic unitaries. We illustrate the utility of this search strategy by designing control waveforms that adiabatically implement a two-qubit entangling gate for a model NMR system.

DOI

10.1103/PhysRevA.93.052329

COinS