Document Type
Article
Publication Date
9-14-2009
Publication Title
Physical Review A - Atomic, Molecular, and Optical Physics
Department
Department of Physics and Astronomy
Abstract
Dynamically corrected gates were recently introduced [K. Khodjasteh and L. Viola, Phys. Rev. Lett. 102, 080501 (2009)] as a tool to achieve decoherence-protected quantum gates based on open-loop Hamiltonian engineering. Here, we further expand the framework of dynamical quantum error correction, with emphasis on elucidating under what conditions decoherence suppression can be ensured while performing a generic target quantum gate, using only available bounded-strength control resources. Explicit constructions for physically relevant error models are detailed, including arbitrary linear decoherence and pure dephasing on qubits. The effectiveness of dynamically corrected gates in an illustrative non-Markovian spin-bath setting is investigated numerically, confirming the expected fidelity performance in a wide parameter range. Robustness against a class of systematic control errors is automatically incorporated in the perturbative error regime.
DOI
10.1103/PhysRevA.80.032314
Dartmouth Digital Commons Citation
Khodjasteh, Kaveh and Viola, Lorenza, "Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls" (2009). Dartmouth Scholarship. 1921.
https://digitalcommons.dartmouth.edu/facoa/1921