Document Type
Article
Publication Date
5-17-2007
Publication Title
Physical Review B - Condensed Matter and Materials Physics
Department
Department of Physics and Astronomy
Abstract
We investigate the performance of dynamical decoupling methods at suppressing electron spin decoherence from a low-temperature nuclear spin reservoir in a quantum dot. The controlled dynamics is studied through exact numerical simulation, with emphasis on realistic pulse delays and the long-time limit. Our results show that optimal performance for this system is attained by a periodic protocol exploiting concatenated design, with control rates substantially slower than expected from the upper spectral cutoff of the bath. For a known initial electron spin state, coherence can saturate at long times, signaling the creation of a stable “spin-locked” decoherence-free subspace. Analytical insight into saturation is obtained for a simple echo protocol, in good agreement with numerical results.
DOI
10.1103/PhysRevB.75.201302
Dartmouth Digital Commons Citation
Zhang, Wenxian; Dobrovitski, V. V.; Santos, Lea F.; Viola, Lorenza; and Harmon, B. N., "Dynamical Control of Electron Spin Coherence In a Quantum Dot: A Theoretical Study" (2007). Dartmouth Scholarship. 1940.
https://digitalcommons.dartmouth.edu/facoa/1940